Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T13:16:43.995Z Has data issue: false hasContentIssue false

Solvent-vapor annealing-induced growth, alignment, and patterning of π-conjugated supramolecular nanowires

Published online by Cambridge University Press:  25 January 2011

Hin-Lap Yip
Affiliation:
Department of Materials Science and Engineering, Institute of Advanced Materials and Technology, University of Washington, Seattle, Washington 98195
Hong Ma
Affiliation:
Department of Materials Science and Engineering, Institute of Advanced Materials and Technology, University of Washington, Seattle, Washington 98195
Yanqing Tian
Affiliation:
Department of Materials Science and Engineering, Institute of Advanced Materials and Technology, University of Washington, Seattle, Washington 98195
Orb Acton
Affiliation:
Department of Materials Science and Engineering, Institute of Advanced Materials and Technology, University of Washington, Seattle, Washington 98195
Neil M. Tucker
Affiliation:
Department of Materials Science and Engineering, Institute of Advanced Materials and Technology, University of Washington, Seattle, Washington 98195; and Department of Chemistry, University of Washington, Seattle, Washington 98195
Alex K-Y. Jen*
Affiliation:
Department of Materials Science and Engineering, Institute of Advanced Materials and Technology, University of Washington, Seattle, Washington 98195; and Department of Chemistry, University of Washington, Seattle, Washington 98195
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The self-assembling properties of two rationally designed discotic π-conjugated hexaazatrinaphthylene (HATNA) molecules have been studied. In appropriate solvent systems, both ester-dodecyl-substituted and amide-dodecyl-substituted HATNAs self-assembled into nanowires and formed organogels. These nanowires could be easily transferred onto solid supports through spin casting for morphological study. In addition to the solution-based self-assembly method, solvent-vapor annealing (SVA) was explored as an alternative way to control the organization of supramolecular nanowires on surfaces. It was found that amorphous thin film of HATNA molecules transformed gradually into nanowire structures through a nucleation and growth mechanism during the SVA process. Several parameters including the preordering of molecules in the original thin film, choice of solvent vapors, annealing times, and surface properties were tuned to create different supramolecular organizations. Under particular conditions, aligned nanowires with preferential direction can be achieved.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Whitesides, G.M., Mathias, J.P., and Seto, C.T.: Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254, 1312 (1991).CrossRefGoogle ScholarPubMed
2.Lehn, J.M.: Toward self-organization and complex matter. Science 295, 2400 (2002).CrossRefGoogle ScholarPubMed
3.Meijer, E.W. and Schenning, A.P.H.J.: Chemistry: Material marriage in electronics. Nature 419, 353 (2002).CrossRefGoogle Scholar
4.Grimsdale, A.C. and Mullen, K.: The chemistry of organic nanomaterials. Angew. Chem. Int. Ed. 44, 5592 (2005).CrossRefGoogle ScholarPubMed
5.Schenning, A.P.H.J. and Meijer, E.W.: Supramolecular electronics: Nanowires from self-assembled pi-conjugated systems. Chem. Commun. 26, 3245 (2005).CrossRefGoogle Scholar
6.Hoeben, F.J.M., Jonkheijm, P., Meijer, E.W., and Schenning, A.P.H.J.: About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 105, 1491 (2005).CrossRefGoogle ScholarPubMed
7.Elemans, J.A.A.W., van Hameren, R., Nolte, R.J.M., and Rowan, A.E.: Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 18, 1251 (2006).CrossRefGoogle Scholar
8.van Hameren, R., Schon, P., van Buul, A.M., Hoogboom, J., Lazarenko, S.V., Gerritsen, J.W., Engelkamp, H., Christianen, P.C.M., Heus, H.A., Maan, J.C., Rasing, T., Speller, S., Rowan, A.E., Elemans, J.A.A.W., and Nolte, R.J.M.: Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314, 1433 (2006).CrossRefGoogle ScholarPubMed
9.Schmidt-Mende, L., Fechtenkotter, A., Mullen, K., Moons, E., Friend, R.H., and MacKenzie, J.D.: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119 (2001).CrossRefGoogle ScholarPubMed
10.El-ghayoury, A., Schenning, A.P.H.J., van Hal, P.A., van Duren, J.K.J., Janssen, R.A.J., and Meijer, E.W.: Supramolecular hydrogen-bonded oligo(p-phenylene vinylene) polymers. Angew. Chem. Int. Ed. 40, 3660 (2001).3.0.CO;2-B>CrossRefGoogle ScholarPubMed
11.Neuteboom, E.E., Meskers, S.C.J., van Hal, P.A., van Duren, J.K.J., Meijer, E.W., Janssen, R.A.J., Dupin, H., Pourtois, G., Cornil, J., Lazzaroni, R., Bredas, J.L., and Beljonne, D.: Alternating oligo(p-phenylene vinylene)-perylene bisimide copolymers: Synthesis, photophysics, and photovoltaic properties of a new class of donor-acceptor materials. J. Am. Chem. Soc. 125, 8625 (2003).CrossRefGoogle ScholarPubMed
12.Pisula, W., Menon, A., Stepputat, M., Lieberwirth, I., Kolb, U., Tracz, A., Sirringhaus, H., Pakula, T., and Mullen, K.: A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa- peri-hexabenzoeoronene. Adv. Mater. 17, 684 (2005).CrossRefGoogle Scholar
13.Shklyarevskiy, I.O., Jonkheijm, P., Stutzmann, N., Wasserberg, D., Wondergem, H.J., Christianen, P.C.M., Schenning, A.P.H.J., de Leeuw, D.M., Tomovic, Z., Wu, J., Mullen, K., and Maan, J.C.: High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127, 16233 (2005).CrossRefGoogle ScholarPubMed
14.Cavallini, M., Stoliar, P., Moulin, J.F., Surin, M., Leclere, P., Lazzaroni, R., Breiby, D.W., Andreasen, J.W., Nielsen, M.M., Sonar, P., Grimsdale, A.C., Mullen, K., and Biscarini, F.: Field-effect transistors based on self-organized molecular nanostripes. Nano Lett. 5, 2422 (2005).CrossRefGoogle ScholarPubMed
15.Xiao, S.X., Myers, M., Miao, Q., Sanaur, S., Pang, K., Steigerwald, M.L., and Nuckolls, C.: Molecular wires from contorted aromatic compounds. Angew. Chem. Int. Ed. 44, 7390 (2005).CrossRefGoogle ScholarPubMed
16.Yip, H.L., Ma, H., Jen, A.K.Y., Dong, J., and Parviz, B.A.: Two-dimensional self-assembly of 1-pyrylphosphonic acid: Transfer of stacks on structured surface. J. Am. Chem. Soc. 128, 5672 (2006).CrossRefGoogle ScholarPubMed
17.Dong, J., Yip, H.L., Ma, H., Jen, A.K.Y., and Parviz, B.A.: Gated lateral charge transport in self-assembled 1-pyrylphosphonic acid molecular multilayers. Appl. Phys. Lett. 88, 223112 (2006).CrossRefGoogle Scholar
18.Jonkheijm, P., Stutzmann, N., Chen, Z., de Leeuw, D.M., Meijer, E.W., Schenning, A.P.H.J., and Wurthner, F.: Control of ambipolar thin film architectures by co-self-assembling oligo(p-phenylenevinylene)s and perylene bisimides. J. Am. Chem. Soc. 128, 9535 (2006).Google Scholar
19.Wurthner, F., Thalacker, C., and Sautter, A.: Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and pi–pi interactions. Adv. Mater. 11, 754 (1999).Google Scholar
20.Jonkheijm, P., Hoeben, F.J.M., Kleppinger, R., van Herrikhuyzen, J., Schenning, A.P.H.J., and Meijer, E.W.: Transfer of pi-conjugated columnar stacks from solution to surfaces. J. Am. Chem. Soc. 125, 15941 (2003).Google Scholar
21.Nguyen, T.Q., Martel, R., Avouris, P., Bushey, M.L., Brus, L., and Nuckolls, C.: Molecular interactions in one-dimensional organic nanostructures. J. Am. Chem. Soc. 126, 5234 (2004).CrossRefGoogle ScholarPubMed
22.Hill, J.P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N., and Aida, T.: Self-assembled hexa- peri-hexabenzocoronene graphitic nanotube. Science 304, 1481 (2004).CrossRefGoogle ScholarPubMed
23.Shirakawa, M., Fujita, N., and Shinkai, S.: A stable single piece of unimolecularly pi-stacked porphyrin aggregate in a thixotropic low molecular weight gel: A one-dimensional molecular template for polydiacetylene wiring up to several tens of micrometers in length. J. Am. Chem. Soc. 127, 4164 (2005).Google Scholar
24.Kastler, M., Pisula, W., Wasserfallen, D., Pakula, T., and Mullen, K.: Influence of alkyl substituents on the solution- and surface-organization of hexa- peri-hexabenzocoronenes. J. Am. Chem. Soc. 127, 4286 (2005).Google Scholar
25.Genson, K.L., Holzmueller, J., Ornatska, M., Yoo, Y.S., Par, M.H., Lee, M., and Tsukruk, V.V.: Assembling of dense fluorescent supramolecular webs via self-propelled star-shaped aggregates. Nano Lett. 6, 435 (2006).CrossRefGoogle ScholarPubMed
26.Jonkheijm, P., van der Schoot, P., Schenning, A.P.H.J., and Meijer, E.W.: Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80 (2006).CrossRefGoogle ScholarPubMed
27.Raez, J., Moralez, J.G., and Fenniri, H.: Long-range flow-induced alignment of self-assembled rosette nanotubes on Si/SiOx and poly(methyl methacrylate)-coated Si/SiOx. J. Am. Chem. Soc. 126, 16298 (2004).CrossRefGoogle ScholarPubMed
28.Shklyarevskiy, I.O., Jonkheijm, P., Christianen, P.C.M., Schenning, A.P.H.J., Guerzo, A.D., Desvergne, J.P., Meijer, E.W., and Maan, J.C.: Magnetic alignment of self-assembled anthracene organogel fibers. Langmuir 21, 2108 (2005).Google Scholar
29.Lee, J.H., Choi, S.M., Pate, B.D., Chisholm, M.H., and Han, Y.S.: Magnetic uniaxial alignment of the columnar superstructure of discotic metallomesogens over the centimetre length scale. J. Mater. Chem. 16, 2785 (2006).CrossRefGoogle Scholar
30.Messmore, B.W., Hulvat, J.F., Sone, E.D., and Stupp, S.I.: Synthesis, self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules. J. Am. Chem. Soc. 126, 14452 (2004).Google Scholar
31.Sardone, L., Palermo, V., Devaux, E., Credgington, D., de Loos, M., Marletta, G., Cacialli, F., van Esch, J., and Samori, P.: Electric-field-assisted alignment of supramolecular fibers. Adv. Mater. 18, 1276 (2006).CrossRefGoogle Scholar
32.Yip, H.L., Zou, J., Ma, H., Tian, Y., Tucker, N.M., and Jen, A.K.Y.: Patterning of robust self-assembled n-type hexaazatrinaphthylene-based nanorods and nanowires by microcontact printing. J. Am. Chem. Soc. 128, 13042 (2006).CrossRefGoogle ScholarPubMed
33.Du, M., Bu, X.H., and Biradha, K.: A large delocalized pi-electron system: Diquinoxalino[2.3-a: 2′.3′-c]phenazine chloroform solvate. Acta Crystallogr. Sec. C C57, 199 (2001).CrossRefGoogle Scholar
34.Lemaur, V., da Silva Filho, D.A., Coropceanu, V., Lehmann, M., Geerts, Y., Piris, J., Debije, M.G., van de Craats, A.M., Senthikumar, K., Siebbeles, L.D.A., Warman, J.M., Bredas, J.L., and Cornil, J.: Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure-property relationships. J. Am. Chem. Soc. 126, 3271 (2004).Google Scholar
35.Lehmann, M., Kestemont, G., Aspe, R.G., Buess-Herman, C., Koch, M.H.J., Debije, M.G., Piris, J., de Hass, M.P., Warman, J.M., Watson, M.D., Lemaur, V., Cornil, J., Geerts, Y.H., Gearba, R., and Ivanov, D.A.: High charge-carrier mobility in pi-deficient discotic mesogens: Design and structure-property relationship. Chemistry 11, 3349 (2005).CrossRefGoogle ScholarPubMed
36.Kaafarani, B.R., Kondo, T., Yu, J., Zhang, Q., Dattilo, D., Risko, C., Jones, S.C., Barlow, S., Domercq, B., Amy, F., Kahn, A., Bredas, J.L., Kippelen, B., and Marder, S.R.: High charge-carrier mobility in an amorphous hexaazatrinaphthylene derivative. J. Am. Chem. Soc. 127, 16358 (2005).CrossRefGoogle Scholar
37.Conboy, J.C., Olson, E.J.C., Adams, D.M., Kerimo, J., Zaban, A., Gregg, B.A., and Barbara, P.F.: Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films. J. Phys. Chem. B 102, 4516 (1998).Google Scholar
38.Mascaro, D.J., Thompson, M.E., Smith, H.I., and Bulovic, V.: Forming oriented organic crystals from amorphous thin films on patterned substrates via solvent-vapor annealing. Org. Electron. 6, 211 (2005).CrossRefGoogle Scholar
39.Dickey, K.C., Anthony, J.E., and Loo, Y.L.: Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv. Mater. 18, 1721 (2006).CrossRefGoogle Scholar
40.Datar, A., Oitker, R., and Zang, L.: Surface-assisted one-dimensional self-assembly of a perylene-based semiconductor molecule. Chem. Commun. 15, 1649 (2006).CrossRefGoogle Scholar
41.De Luca, G., Liscio, A., Maccagnani, P., Nolde, F., Palermo, V., Mullen, K., and Samori, P.: Nucleation-governed reversible self-assembly of an organic semiconductor at surfaces: Long-range mass transport forming giant functional fibers. Adv. Funct. Mater. 17, 3791 (2007).CrossRefGoogle Scholar
42.Kim, D.H., Park, Y.D., Jang, Y., Kim, S., and Cho, K.: Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films. Macromol. Rapid Commun. 26, 834 (2005).CrossRefGoogle Scholar
43.Kim, D.H., Jang, Y., Park, Y.D., and Cho, K.: Controlled one-dimensional nanostructures in poly(3-hexylthiophene) thin film for high-performance organic field-effect transistors. J. Phys. Chem. B 110, 15763 (2006).Google Scholar
44.Kim, S.H., Misner, M.J., and Russell, T.P.: Solvent-induced ordering in thin film diblock copolymer/homopolymer mixtures. Adv. Mater. 16, 2119 (2004).Google Scholar
45.Xuan, Y., Peng, J., Cui, L., Wang, H., Li, B., and Han, Y.: Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment. Macromolecules 37, 7301 (2004).CrossRefGoogle Scholar
46.Martin, R.B.: Comparisons of indefinite self-association models. Chem. Rev. 96, 3043 (1996).CrossRefGoogle ScholarPubMed
47.Wurthner, F., Thalacker, C., and Sautter, A.: Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and pi–pi interactions. Adv. Mater. 11, 754 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
48.Ishi-i, T., Yaguma, K., Kuwahara, R., Taguri, Y., and Mataka, S.: Self-assembling of n-type semiconductor tri(phenanthrolino)hexaazatriphenylenes with a large aromatic core. Org. Lett. 8, 585 (2006).CrossRefGoogle ScholarPubMed
49.Liu, X.Y.: Gelation with small molecules: From formation mechanism to nanostructure architecture. Top. Curr. Chem. 256, 1 (2005).Google Scholar
50.Yamaguchi, T., Kimura, T., Matsuda, H., and Aida, T.: Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew. Chem. Int. Ed. 43, 6350 (2004).CrossRefGoogle ScholarPubMed
51.Xia, Y.N. and Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).Google Scholar
52.Park, J., Shim, S.O., and Lee, H.H.: Polymer thin-film transistors fabricated by dry transfer of polymer semiconductor. Appl. Phys. Lett. 86, 073505 (2005).Google Scholar
53.Briseno, A.L., Roberts, M., Ling, M.M., Moon, H., Nemanick, E.J., and Bao, Z.: Patterning organic semiconductors using “dry” poly(dimethylsiloxane) elastomeric stamps for thin film transistors. J. Am. Chem. Soc. 128, 3880 (2006).Google Scholar
54.Wang, Z., Zhang, J., Xing, R., Yuan, J., Yan, D., and Han, Y.: Micropatterning of organic semiconductor microcrystalline materials and OFET fabrication by “hot lift off.” J. Am. Chem. Soc. 125, 15278 (2003).CrossRefGoogle Scholar
55.Park, S.Y., Kwon, T., and Lee, H.H.: Transfer patterning of pentacene for organic thin-film transistors. Adv. Mater. 18, 1861 (2006).Google Scholar
56.Oh, J.H., Lee, H.W., Mannsfeld, S., Stoltenberg, R.M., Jung, E., Jin, Y.W., Kim, J.M., Yoo, J.B., and Bao, Z.N.: Solution-processed, high-performance n-channel organic microwire transistors. Proc. Natl. Acad. Sci. USA. 106, 6065 (2009).Google Scholar
57.Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S.H., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., and Bao, Z.N.: Patterning organic single-crystal transistor arrays. Nature 444, 913 (2006).Google Scholar
58.Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., and Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171 (2004).CrossRefGoogle ScholarPubMed
59.Chabinyc, M.L., Wong, W.S., Salleo, A., Paul, K.E., and Street, R.A.: Organic polymeric thin-film transistors fabricated by selective dewetting. Appl. Phys. Lett. 81, 4260 (2002).Google Scholar
Supplementary material: File

Yip Supplementary Material

Yip Supplementary Figures

Download Yip Supplementary Material(File)
File 3.9 MB