Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T09:29:33.312Z Has data issue: false hasContentIssue false

Pulsed-laser-induced nc-Si and nc-Si/SiOx core–shell structures on Si substrates

Published online by Cambridge University Press:  31 January 2011

Y. Ma
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
X.T. Zeng
Affiliation:
Surface Technology Group (STG), Singapore Institute of Manufacturing Technology, Singapore 638075
T. Yu
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
Y. Zhu
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
Z.X. Shen*
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Pulsed-laser-induced Si nanostructures on Si substrates were investigated using third harmonic Nd3+:yttrium aluminum garnet (355nm) laser irradiation under ambient conditions. Nanostructures were found in the laser-irradiated areas as well as in their surrounding areas. The laser-irradiated areas contained Si nanoparticles with an average size of about 50 nm. In the vicinity of the laser-irradiated areas, uniform nc-Si/SiOx core–shell structures were observed. Scanning electron microscopy images indicate that the core–shell structures had an average size of 500 nm while Raman data show that the Si cores were made of a large number of much smaller Si nanocrystals (nc-Si). The photoluminescence (PL) measurement of nc-Si/SiOx core–shells exhibited a broad visible emission centered at 640 nm, which can be assigned as due to defects at the interface between nc-Si and SiOx as well as oxygen-related defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Demchuk, A.V.Labunov, V.A.: Surface morphology and structure modification of silicon layer radiation. Appl. Surf. Sci. 86, 353 1995CrossRefGoogle Scholar
2Dubowski, J.J., Compaan, A.Prasad, M.: Laser assisted dry etching ablation of InP. Appl. Surf. Sci. 86, 548 1995CrossRefGoogle Scholar
3Lu, Y.F., Choi, W.K., Aoyagi, Y., Knomura, A.Fujii, K.: Controllable laser-induced periodic structures at silicon-dioxide/silicon interface by excimer laser irradiation. J. Appl. Phys. 80, 7052 1996CrossRefGoogle Scholar
4Lu, Y.F., Yu, J.J.Choi, W.K.: Theoretical analysis of laser-induced periodic structures at silicon-dioxide/silicon and silicon-dioxide/aluminum interface. Appl. Phys. Lett. 71, 3439 1997CrossRefGoogle Scholar
5Chen, X.Y., Lu, Y.F., Cho, B.J., Zeng, Y.P., Zeng, J.N.Wu, Y.H.: Pattern-induced ripple structures at silicon-oxide/silicon interface by excimer laser irradiation. Appl. Phys. Lett. 81, 1344 2002CrossRefGoogle Scholar
6Young, J.F., Sipe, J.E., Preston, J.S.van Driel, H.M.: Laser-induced periodic surface damage and radiation remnants. Appl. Phys. Lett. 41, 261 1982CrossRefGoogle Scholar
7Sipe, J.E., Young, J.F., Preston, J.S.van Driel, H.M.: Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 27, 1141 1983Google Scholar
8Young, J.F., Preston, J.S., van Driel, H.M.Sipe, J.E.: Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155 1983Google Scholar
9Young, J.F., Sipe, J.E.van Driel, H.M.: Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium. Phys. Rev. B 30, 2001 1984CrossRefGoogle Scholar
10Wang, X.C., Lim, G.C., Ng, F.L., Liu, W.Chua, S.J.: Subwavelength periodic ripple formation on GaN surface by femtosecond laser pulses. Sur. Rev. Lett. 12, 651 2005CrossRefGoogle Scholar
11Ozkan, A.M., Malshe, A.P., Railkar, T.A.Brown, W.D.: Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters. Appl. Phys. Lett. 75, 3716 1999CrossRefGoogle Scholar
12Yasumaru, N., Miyazaki, K.Kiuchi, J.: Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl. Phys. A 76, 983 2003CrossRefGoogle Scholar
13Lu, Y.Chen, S.C.: Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14, 505 2003Google Scholar
14Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P.Yalisove, S.M.: Silicon surface morphologies after femtosecond laser irradiation. MRS Bull. 31, 626 2006CrossRefGoogle Scholar
15Harzic, R.L., Schuck, H., Sauer, D., Anhut, T., Riemann, I.Konig, K.: Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt. Express 13, 6651 2005CrossRefGoogle ScholarPubMed
16Cullis, A.G.Canham, L.T.: Visible light emission due to quantum-size effects in highly porous crystalline silicon. Nature 353, 335 1991CrossRefGoogle Scholar
17Pavesi, L., Negro, L.D., Mazzoleni, C., Franzo, G.Priolo, F.: Optical gain in silicon nanocrystals. Nature 408, 440 2000CrossRefGoogle ScholarPubMed
18Rong, H., Liu, A., Jones, R., Cohen, O., Hak, D., Nicolaescu, R., Fang, A.Paniccia, M.: An all-silicon Raman laser. Nature 433, 292 2005CrossRefGoogle ScholarPubMed
19Kamenev, B.V., Grebel, H.Tsybeskov, L.: Laser-induced structural modifications in nanocrystalline silicon/ amorphous silicon dioxide superlattices. Appl. Phys. Lett. 88, 143117 2006CrossRefGoogle Scholar
20Rossi, M.C., Salvatori, S., Gualluzzi, F.Conte, G.: Laser-induced nanocrystalline silicon formation in a-SiO matrices. Mater. Sci. Eng., B 69-70, 299 2000CrossRefGoogle Scholar
21Kanemitsu, Y.Okamato, S.: Photoluminescence mechanism in surface-oxidized silicon nanocrystals. Phys. Rev. B 55, 7375 1997CrossRefGoogle Scholar
22Lacona, F., Franzo, G.Spinella, C.: Correlation between luminescence and structureal properties of Si nanocrystals. J. Appl. Phys. 87, 1295 2000Google Scholar
23Prokes, S.M.Carlos, W.E.: Oxygen defect center red room temperature photoluminescence from freshly etched and oxidized porous silicon. J. Appl. Phys. 78, 2671 1995Google Scholar
24Khriachtchev, L., Rasanen, M., Novikov, S.Pavesi, L.: Systematica correlation between Raman spectra, photoluminescence intensity, and absorption coefficient of silica layers containing Si nanocrystals. Appl. Phys. Lett. 85, 1511 2004Google Scholar
25Takeoka, S., Fjii, M.Hayashi, S.: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820 2000CrossRefGoogle Scholar
26Kovalev, D., Heckler, H., Ben-Chorin, M., Polisski, G., Schwartzkopff, M.Koch, F.: Breakdown of the k-conservation rule in Si nanocrystals. Phys. Rev. Lett. 81, 2803 1998CrossRefGoogle Scholar
27Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCaffrey, J.P.Lockwood, D.J.: Nanocrystalline-silicon superlattice produced Appl. Phys. Lett. 72, 43 1998Google Scholar
28van Buuren, T., Dinh, L.N., Chase, L.L., Siekhaus, W.J.Terminello, L.J.: Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys. Rev. Lett. 80, 3803 1998CrossRefGoogle Scholar
29Campbell, I.H.Fauchet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 1986CrossRefGoogle Scholar