Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:55:42.774Z Has data issue: false hasContentIssue false

Preparation of refractory carbide fibers by thermal decomposition of transition metal (Ti, Zr, Hf, Nb, Ta) alkoxide-cellulose precursor gel fibers

Published online by Cambridge University Press:  31 January 2011

Y. Kurokawa
Affiliation:
Faculty of Engineering, Tohoku University, Aoba Sendai 980, Japan
S. Kobayashi
Affiliation:
Faculty of Engineering, Tohoku University, Aoba Sendai 980, Japan
M. Suzuki
Affiliation:
Faculty of Engineering, Tohoku University, Aoba Sendai 980, Japan
M. Shimazaki
Affiliation:
Faculty of Science, Japan Women's University, Mejirodai, Bunkyoku, Tokyo 113, Japan
M. Takahashi
Affiliation:
Faculty of Science, Japan Women's University, Mejirodai, Bunkyoku, Tokyo 113, Japan
Get access

Abstract

Gel fibers have been prepared by extruding cellulose acetate spinning solution into transition metal (Ti, Zr, Hf, Nb, Ta) acetone solution as a coagulation bath. Gel formation must be due to the coordination of metal to OH and CO groups on the pyranose ring. The resultant gel fibers have been converted into carbide fibers by pyrolyzing them in Ar and N2 atmospheres at temperatures lower than for powder processing. This precursor gel can give a molecular scale mixture of metal and carbon sources.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cooke, T. F., J. Am. Ceram. Soc. 74, 2959 (1991).CrossRefGoogle Scholar
2.Hayamizu, R., Seni To Kogyo (Fiber & Industry) 44, 239 (1983).Google Scholar
3.Thorne, K., Ting, S. I., Chu, C. J., Chu, J. D., Mackenzie, J. D., and Hawthorne, M. F., J. Mater. Sci. 27, 4406 (1992).CrossRefGoogle Scholar
4.Sano, T. and Kaneko, Y., J. Ceram. Soc. Jpn., Int. ed. 100, 4406 (1992).CrossRefGoogle Scholar
5.Hasegawa, I., Nakamura, T., Motojima, S., and Kajiwara, M., J. Mater. Chem. 5, 193 (1995).CrossRefGoogle Scholar
6.Shimoo, T., Takemura, M., Narisawa, M., Okamura, K., and Kurachi, Y., J. Ceram. Soc. Jpn. 103, 381 (1995).CrossRefGoogle Scholar
7.Okada, K., Kato, H., and Nakajima, K., J. Am. Ceram. Soc. 77, 1691 (1994).CrossRefGoogle Scholar
8.Selvaraj, U., Prasada, A. V., Komarneni, S., Brooks, K., and Kurtz, S., J. Mater. Res. 7, 992 (1992).CrossRefGoogle Scholar
9.Nomura, K., Takasuka, Y., Kamiya, K., and Nasu, H., J. Mater. Sci., Mater. Elect. 5, 53 (1994).CrossRefGoogle Scholar
10.Transition Metal Carbides and Nitrides, edited by Toth, L. E. (Academic Press, New York and London, 1971).Google Scholar
11.Deuff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-Cryst. Solids, 89, 206 (1987).CrossRefGoogle Scholar
12.Larbot, A., Hours, T., Bergez, P., Charpin, J. and Cot, L.. J. Non-Cryst. Solids 147/148, 85 (1992).CrossRefGoogle Scholar
13.High Temperature Materials: The Controlling Physical Processes, edited by J., Kennedy (Oliver & Boyd, London, 1968).Google Scholar