Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T15:58:49.107Z Has data issue: false hasContentIssue false

Preparation of MgB2 powder for ex situ tape with high Jc-B performance

Published online by Cambridge University Press:  31 January 2011

Takayuki Nakane*
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Hiroaki Kumakura
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The relationship between the preparation conditions of MgB2 powder and the performance of the critical current density (Jc) of an applied magnetic field (B) of the final ex situ tape produced from it was investigated. The pelletizing pressure of the precursor is crucially important for improving the Jc-B performance of ex situ tape. The higher the pressure, the greater the resulting Jc of the ex situ MgB2 tape. We have shown that the pelletizing pressure used for the precursor mixture during the powder preparation process affects the phases formed in the MgB2. On the other hand, the heating time used is effective in changing the slope of the Jc-B curve of the final tape. This is thought to be due to a change in the crystallinity of the prepared MgB2 powder. The experimental data gathered here will become the basis for investigating the establishment of a guideline for preparing the starting powder used for the manufacture of ex situ MgB2 tape.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kumakura, H., Matsumoto, A., Fujii, H.Togano, K.: High transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes. Appl. Phys. Lett. 79, 2435 2001CrossRefGoogle Scholar
2Fujii, H., Togano, K.Kumakura, H.: Enhancement of critical current densities of powder-in-tube processed MgB2 tapes by using MgH2 as a precursor powder. Supercond. Sci. Technol. 15, 1571 2002CrossRefGoogle Scholar
3Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P.Tomsic, M.: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419 2002CrossRefGoogle Scholar
4Tachikawa, K., Yamada, Y., Enomoto, M., Aodai, M.Kumakura, H.: Structure and critical current of Ni-sheathed PIT MgB2 tapes with In metal powder addition. Physica C 392–396, 1030 2003CrossRefGoogle Scholar
5Noda, T., Takeuchi, T.Fujita, M.: Induced activity of several candidate superconductor materials in a Tokamak-type fusion reactor. J. Nucl. Mater. 329-333, 1590 2004CrossRefGoogle Scholar
6Grasso, G., Malagoli, A., Modica, M., Tumino, A., Ferdeghini, C., Siri, A.S., Vignola, C., Martini, L., Previtali, V.Volpini, G.: Fabrication and properties of monofilamentary MgB2 superconducting tapes. Supercond. Sci. Technol. 16, 271 2003CrossRefGoogle Scholar
7Serquis, A., Civale, L., Hammon, D.L., Coulter, J.Y., Liao, X.Z., Zhu, Y.T., Peterson, D.E.Mueller, F.M.: Microstructure and high critical current of powder-in-tube MgB2. Appl. Phys. Lett. 82, 1754 2003CrossRefGoogle Scholar
8Schlachter, S.I., Goldacker, W., Reiner, J., Zimmer, S., Liu, B.Obst, B.: Influence of the preparation process on microstructure, critical current density and T c of MgB2 powder-in-tube wires. IEEE Trans. Appl. Supercond. 13, 3203 2003CrossRefGoogle Scholar
9Nakane, T., Fujii, H., Matsumoto, A., Kitaguchi, H.Kumakura, H.: The improvement of in situ powder in tube MgB2 tapes by mixing MgB2 to the starting powder of MgH2 and B. Physica C 426–431, 1238 2005CrossRefGoogle Scholar
10Nakane, T., Jiang, C.H., Mochiku, T., Fujii, H., Kuroda, T.Kumakura, H.: Effect of SiC nanoparticle addition on the critical current density of MgB2 tapes fabricated from MgH2, B and MgB2 powder mixtures. Supercond. Sci. Technol. 18, 1337 2005CrossRefGoogle Scholar
11Suo, H.L., Lezza, P., Uglietti, D., Beneduce, C., Abacherli, V.Flükiger, R.: Transport critical current densities and n factors in mono- and multifilamentary MgB2/Fe tapes and wires using fine powders. IEEE Trans. Appl. Supercond. 16, 3265 2003CrossRefGoogle Scholar
12Soltanian, S., Wang, X.L., Kusevic, I., Babic, E., Li, A.H., Liu, H.K., Collings, E.W.Dou, S.X.: High-transport critical current density above 30 K in pure Fe-clad MgB2 tape. Physica C 361, 84 2001CrossRefGoogle Scholar
13Jin, S., Mavoori, H., Bower, C.van Dover, R.B.: High critical currents in iron-clad superconducting MgB2 wires. Nature 411, 563 2001CrossRefGoogle ScholarPubMed
14Nakane, T., Kitaguchi, H.Kumakura, H.: Improvement in the critical current density of ex situ powder in tube processed MgB2 tapes by utilizing powder prepared from an in situ processed tape. Appl. Phys. Lett. 88, 22513 2006CrossRefGoogle Scholar
15Nakane, T., Kitaguchi, H., Fujii, H.Kumakura, H.: Improvement of ex situ MgB2 powder in tube processed tapes using MgH2 powder. Physica C 445–448, 784 2006CrossRefGoogle Scholar
16Nakane, T., Kitaguchi, H.Kumakura, H.: Ex situ fabrication of MgB2/Al tapes with high critical current density. Supercond. Sci. Technol. 19, 528 2006CrossRefGoogle Scholar
17Nakane, T., Kitaguchi, H., Matsumoto, A.Kumakura, H.: Improvement in the J c-B characteristics of ex situ MgB2 tape with SiC addition. IEEE Trans. Appl. Supercond. 17, 2903 2007CrossRefGoogle Scholar
18Yamamoto, A., Shimoyama, J., Ueda, S., Katsura, Y., Horii, S.Kishio, K.: Universal relationship between crystallinity and irreversibility field of MgB2. Supercond. Sci. Technol. 17, 921 2004CrossRefGoogle Scholar
19Shimoyama, J., Hanafusa, K., Yamamoto, A., Katsura, Y., Horii, S., Kishio, K.Kumakura, H.: Catalytic effect of silver addition on the low temperature phase formation of MgB2. Supercond. Sci. Technol. 20, 307 2007CrossRefGoogle Scholar