Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T13:57:45.921Z Has data issue: false hasContentIssue false

The influences of reactant composition and substrate material on the combustion synthesis of diamond

Published online by Cambridge University Press:  26 July 2012

Colin A. Wolden
Affiliation:
Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401-1887
Charles E. Draper
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919
Z. Sitar
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919
J. T. Prater
Affiliation:
Army Research Office, Research Triangle Park, North Carolina 27709-2211
Get access

Extract

It has been observed that diamond deposition by flat flame chemical vapor deposition is achieved over a very narrow range of reactant composition. We demonstrate that this diamond deposition window is strongly determined by the nature of the substrate material. Furthermore, once a continuous diamond film is formed, the window appears to be independent of the original material. Substrates examined include silicon, glass, titanium, tungsten, nickel, and molybdenum. The dependence of growth rate, morphology, and quality on reactant composition has been quantified using scanning electron microscopy, Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). It was found that the highest quality diamond was grown at conditions where diamond does not nucleate on ultrasonically scratched silicon. Thus, the production of high quality diamond on silicon by combustion synthesis requires different conditions for nucleation and growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murayama, M., Kojima, S., and Uchida, K., J. Appl. Phys. 69, 7924 (1991).Google Scholar
2.Hahn, D. W., Edwards, C. F., McCarty, K. F., and Kee, R. J., Appl. Phys. Lett. 68, 2158 (1996).Google Scholar
3.Glumac, N. G. and Goodwin, D. G., Mater. Lett. 18, 119 (1993).CrossRefGoogle Scholar
4.Kim, J. S. and Cappelli, M. A., J. Mater. Res. 10, 149 (1995).Google Scholar
5.Wolden, C. A., Sitar, Z., Davis, R. F., and Prater, J.T., Appl. Phys. Lett. 67, 1498 (1996).Google Scholar
6.Hirose, Y., Amanuma, S., and Komaki, K., J. Appl. Phys. 68, 6401 (1990).CrossRefGoogle Scholar
7.McCarty, K. F., Meeks, E., Kee, R. J., and Lutz, A. E., Appl. Phys. Lett. 63, 1498 (1993).Google Scholar
8.Wolden, C. A., Davis, R. F., Sitar, Z., and Prater, J.T., J. Mater. Res. 12, 2733 (1997).Google Scholar
9.Wolden, C. A., Davis, R. F., Sitar, Z., and Prater, J. T., Diamond Relat. Mater. 6, 1862 (1997).Google Scholar
10.Wolden, C. A., Han, S. K., McClure, M. T., Sitar, Z., and Prater, J. T., Mater. Lett. 32, 9 (1997).CrossRefGoogle Scholar
11.Schermer, J. J., Hogenkamp, J. E. M., Otter, G. C. J., Janssemn, G., van Enckevort, W. J. P., and Giling, L. J., Diamond Rel. Mater. 2, 1149 (1993).Google Scholar
12.McNamara, K. M., Gleason, K. K., and Robinson, C. J., J. Vac. Sci. Technol. A 10, 3143 (1992).Google Scholar
13.McNamara, K. M., Scruggs, B. E., and Gleason, K. K., J. Appl. Phys. 77, 1459 (1995).Google Scholar
14.Bachmann, P. K., Hagemann, H. J., Lade, H., Leers, D., Wiechert, D. U., Wilson, H., Fournier, D., and Plamann, K., Diamond Relat. Mater. 4, 820 (1995).CrossRefGoogle Scholar
15.Worner, E., Wagner, J., Muller-Sebert, W., Wild, C., and Koidl, P., Appl. Phys. Lett. 68, 1482 (1996).Google Scholar
16.Wild, C., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).CrossRefGoogle Scholar
17.Van der Drift, A., Phillips Res. Rep. 22, 267 (1967).Google Scholar
18.Wild, C., Kohl, R., Herres, N., Muller-Sebert, W., and Koidl, P., Diamond Relat. Mater. 3, 373 (1994).Google Scholar
19.Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
20.Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).Google Scholar
21.von Kaenel, Y., Stiegler, J., and Blank, E., Diamond Relat. Mater. 4, 972 (1995).Google Scholar
22.Stuart, S. A., Prawer, S., and Weiser, P. S., Appl. Phys. Lett. 62, 1227 (1993).CrossRefGoogle Scholar
23.Ascarelli, P., Cappelli, E., Mattei, G., Pinzari, F., and Martelli, S., Diamond Relat. Mater. 4, 464 (1995).Google Scholar
24.Bergman, L. and Nemanich, R. J., J. Appl. Phys. 78, 6709 (1995).CrossRefGoogle Scholar
25.McClure, M. T., von Windheim, J. A., Glass, J. T., and Prater, J. T., Diamond Relat. Mater. 3, 239 (1994).Google Scholar
26.Meeks, E., Kee, R. J., Dandy, D. S., and Coltrin, M. E., Combust. Flame 92, 144160 (1993).Google Scholar
27.Goodwin, D. G., Glumac, N. G., and Shin, H. S., Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1996), p. 1817.Google Scholar
28.Kapoor, S., Kelly, M. A., and Hagstrom, S. B., J. Appl. Phys. 77, 6267 (1997).Google Scholar
29.Goodwin, D. G., J. Appl. Phys. 74, 6882 (1993).Google Scholar
30.Butler, J. E. and Woodin, R. L., Philos. Trans. R. Soc. London, Ser. A 342, 209 (1993).Google Scholar
31.Harris, S. J., Weiner, A. M., Prawer, S., and Nugent, K., J. Appl. Phys. 80, 2187 (1996).Google Scholar
32.Ito, K., Ito, T., and Hosoya, I., Chem. Lett. 4, 589 (1988).Google Scholar
33.Hong, B., Wakagi, M., Drawl, W., Messier, R., and Collins, R. W., Phys. Rev. Lett. 75, 1122 (1995).Google Scholar
34.Marinelli, M., Milani, E., Montouri, M., Paoletti, A., Tebano, A., and Balestrino, G., J. Appl. Phys. 76, 5702 (1994).CrossRefGoogle Scholar
35.Bachmann, P. K., Leers, D., and Lydtin, H., Diamond Relat. Mater. 1, 1 (1991).Google Scholar
36.Prijaya, N. A., Angus, J. C., and Bachmann, P. K., Diamond Relat. Mater. 3, 129 (1993).CrossRefGoogle Scholar
37.Hwang, N.M., Hahn, J.H., and Bahng, G.W., Diamond Relat. Mater. 3, 163 (1993).Google Scholar
38.Rakov, E. G., Appl. Phys. Lett. 69, 2370 (1996).Google Scholar
39.Marinelli, M., Milani, E., Montouri, M., Paoletti, A., Paroli, P., and Thomas, J., Appl. Phys. Lett. 65, 2839 (1994).CrossRefGoogle Scholar