Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:08:54.187Z Has data issue: false hasContentIssue false

Influence of Zirconia Sol-gel Coatings on the Fracture Strength of Brittle Materials

Published online by Cambridge University Press:  01 June 2005

Estíbaliz Sánchez-González
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
Pedro Miranda
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonio Díaz-Parralejo
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonia Pajares
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
Fernando Guiberteau*
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, the effect of a sol-gel ZrO2–3 mol% Y2O3 thin film on the fracture properties of a variety of brittle substrates was investigated. The results suggest that the film does not have any appreciable influence on the fracture behavior of crystalline substrates but dramatically affects the fracture properties of amorphous layers. In particular, a significant reduction of average fracture strength and a major increase of the Weibull modulus were observed on coated glassy slides. The origin of such variations is attributed to the generation of a homogeneous flaw population in the vitreous substrates, and the possible mechanisms for the production of flaws are analyzed. Implications of these results for the practical use of coated glassy layers are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shane, M. and Mecartney, M.I.: Sol-gel synthesis of zirconia barrier coatings. J. Mater. Sci. 25, 1537 (1990).CrossRefGoogle Scholar
2Zhang, Q., Li, X., Shen, J., Wu, G., Wang, J. and Chen, L.: ZrO2 thin films and ZrO2/SiO2 optical reflection filter deposited by sol-gel method. Mater. Lett. 45, 311 (2000).Google Scholar
3Baraldi, A., Capelletti, R., Casalboni, M., Mora, C., Pavesi, M., Pizzoferrato, R., Prosposito, P. and Sarcinelli, F.: Effects of composition and catalyst on the optical properties of ZrO2-based Ormosil films. J. Non-Cryst. Solids 317, 231 (2003).CrossRefGoogle Scholar
4Uhlmann, D.R., Suratwala, T., Davidson, K., Boulton, J.M. and Teowee, G.: Sol-gel derived coatings on glass. J. Non-Cryst. Solids 218, 113 (1997).CrossRefGoogle Scholar
5Brinker, C.J. and Scherer, G.W.: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, CA, 1989).Google Scholar
6Wright, J.D. and Sommerdijk, N.A.J.M.: Sol-Gel Materials Chemistry and Applications (Taylor and Francis, London, U.K., 2001).Google Scholar
7Caruso, R., Díaz-Parralejo, A., Miranda, P. and Guiberteau, F.: Controlled preparation and characterization of multilayer sol-gel zirconia dip-coatings. J. Mater. Res. 16, 2391 (2001).CrossRefGoogle Scholar
8Díaz-Parralejo, A., Caruso, R., Ortiz, A.L. and Guiberteau, F.: Densification and porosity evaluation of ZrO2–3 mol% Y2O3 sol-gel thin films. Thin Solid Films 458, 92 (2004).CrossRefGoogle Scholar
9Boulouz, M., Boulouz, A., Giani, A. and Boyer, A.: Influence of substrate temperature and target composition on the properties of yttria-stabilized zirconia thin films grown by r.f. reactive magneto sputtering. Thin Solid Films 323, 85 (1998).CrossRefGoogle Scholar
10Sanchez-González, E., Miranda, P., Diaz-Parralejo, A., Pajares, A. and Guiberteau, F.: Effect of sol-gel thin coatings on the fracture strength of glass. J. Mater. Res. 19, 896 (2004).CrossRefGoogle Scholar
11Fabes, B.D. and Uhlmann, D.R.: Strengthening of glass by sol-gel coatings. J. Am. Ceram. Soc. 73, 978 (1990).CrossRefGoogle Scholar
12Wang, F.H., Hand, R.J., Ellis, B. and Seddon, A.B.: Glass strengthening using epoxy coatings. Phys. Chem. Glasses 36, 201 (1995).Google Scholar
13Kim, H-W., Deng, Y., Miranda, P., Pajares, A., Kim, D.K., Kim, H-E. and Lawn, B.R.: Effect of flaw state on the strength of brittle coatings on soft substrates. J. Am. Ceram. Soc. 84, 2377 (2001).CrossRefGoogle Scholar
14Kingston, J.G.R. and Hand, R.J.: Strengthening mechanism of epoxy based coatings on glass. Phys. Chem. Glasses 41, 1 (2000).Google Scholar
15Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L. and Lawn, B.R.: Role of flaw statistics in contact fracture of brittle coatings. Acta Mater. 49, 3719 (2001).Google Scholar
16Lee, C-S., Kim, D.K., Sánchez, J., Miranda, P., Pajares, A. and Lawn, B.R.: Rate effects in critical loads for radial cracking in ceramic coatings. J. Am. Ceram. Soc. 85, 2019 (2002).CrossRefGoogle Scholar
17Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214 (1983).CrossRefGoogle Scholar
18Chai, H., Lawn, B.R. and Wuttiphan, S.: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 (1999).Google Scholar
19Rhee, Y-W., Kim, H-W., Deng, Y. and Lawn, B.R.: Contact-induced damage in ceramic on compliant substrates: fracture mechanics and design. J. Am. Ceram. Soc. 84, 1066 (2001).Google Scholar
20Lawn, B.R., Lee, K.S., Chai, H., Pajares, A., Kim, D.K., Wuttiphan, S., Peterson, I.M. and Hu, X.: Damage-resistant brittle coatings. Adv. Eng. Mater. 2, 745 (2000).3.0.CO;2-E>CrossRefGoogle Scholar
21Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L. and Lawn, B.R.: Contact fracture of brittle bilayer coatings on soft substrates. J. Mater. Res. 16, 115 (2001).Google Scholar
22Weibull, W.J.: A statistical distribution function of wide applicability. Appl. Mech. 18, 293 (1951).CrossRefGoogle Scholar
23Lawn, B.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1998), p. 338.Google Scholar
24Gruninger, M.F., Lawn, B.R., Farabaugh, E.N. and Wachtman, J.B.: Measurement of residual stresses in coatings on brittle substrates by indentation fracture. J. Am. Ceram. Soc. 70, 344 (1987).CrossRefGoogle Scholar
25Chuang, T-J. and Lee, S.: Elastic flexure of bilayered beams subject to strain differentials. J. Mater. Res. 15, 2780 (2000).CrossRefGoogle Scholar
26Lawn, B.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1998), p. 307.Google Scholar
27Yu, B., Liang, K. and Gu, S.: Effect of ZrO2 on crystallization of CaO–P2O5–SiO2 glasses. Ceram. Int. 28, 695 (2002).CrossRefGoogle Scholar
28Hong, K.J., Kim, J.M. and Kim, H.S.: Microstructure and properties of CaO–ZrO2–SiO2 glass–ceramics prepared by sintering. J. Eur. Ceram. Soc. 23, 2193 (2003).Google Scholar
29Höglund, L. and Ågren, J.: Analysis of the Kirkendall effect, marker migration and pore formation. Acta Mater. 49, 1311 (2001).CrossRefGoogle Scholar
30Strandlund, H. and Larsson, H.: Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples. Acta Mater. 52, 4695 (2004).CrossRefGoogle Scholar
31Kirkendall, E.O.: Diffusion of zinc in alpha brass. Trans. AIME 147, 104 (1942).Google Scholar
32Smigelskas, A.D. and Kirkendall, E.O.: Zinc diffusion in alpha brass. Trans. AIME 171, 130 (1947).Google Scholar