Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T21:51:36.303Z Has data issue: false hasContentIssue false

Influence of compositional disorder on optical absorption processes in Cu6P(S1−xSex)5I crystals

Published online by Cambridge University Press:  31 January 2011

I. P. Studenyak
Affiliation:
Uzhhorod State University, 46 Pidhirna St., Uzhhorod 294000, Ukraine
M. Kranjčec*
Affiliation:
University of Zagreb, Geotechnical Faculty Varaždin, 7 Hallerova Aleja, 42000 Varaždin, Republic of Croatia, and Ruđer BoškovićInstitute, 54 Bijenička Cesta, 10000 Zagreb, Republic of Croatia
Gy. Sh. Kovacs
Affiliation:
Uzhhorod State University, 46 Pidhirna St., Uzhhorod 294000, Ukraine
I. D. Desnica-Franković
Affiliation:
Ruđer BoškovićInstitute, 54 Bijenička Cesta, 10000 Zagreb, Republic of Croatia
V. V. Panko
Affiliation:
Uzhhorod State University, 46 Pidhirna St., Uzhhorod 294000, Ukraine
V. Yu. Slivka
Affiliation:
Uzhhorod State University, 46 Pidhirna St., Uzhhorod 294000, Ukraine
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

The fundamental absorption edge of Cu6P(S0.6Se0.4)5I and Cu6P(S0.4Se0.6)5I crystals was studied in the 77–320 K temperature range where no phase transitions were revealed by optical techniques. The temperature behavior of the exponential Urbach absorption edge in Cu6P(S0.6Se0.4)5I and Cu6P(S0.4Se0.6)5I crystals was analyzed. The effect of compositional disorder upon the Urbach edge parameters, parameters of exciton-phonon interaction, and lattice parameters in Cu6P(S1−xSex)5I, 0 ≤ x ≤ 1, crystals was studied. The effect of various types of disordering upon the optical absorption processes in Cu6P(S1−xSex)5I crystals is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kuhs, W.F., Nitsche, R., and Scheunemann, K., Mater. Res. Bull. 14, 241 (1979).CrossRefGoogle Scholar
2.Studenyak, I.P., Kovacs, Gy.Sh., Orliukas, A.S., and Kovacs, Ye.T., Izv. Akad Nauk, Ser. Fiz. 56, 86 (1992).Google Scholar
3.Studenyak, I.P., Stefanovich, V.O., Kranjčec, M., Desnica, D.I., Azhnyuk, Yu.M., Kovacs, Gy.Sh., and Panko, V.V., Solid State Ionics 95, 221 (1997).CrossRefGoogle Scholar
4.Haznar, A., Pietraszko, A., and Studenyak, I.P., Solid State Ionics 119, 31 (1999).CrossRefGoogle Scholar
5.Studenyak, I.P., Kovacs, Gy.Sh., Zinzikov, B.I., and Borets, A.N., Fiz. Tverd. Tela 29, 3442 (1987).Google Scholar
6.Studenyak, I.P., Kranjčec, M., Kovacs, Gy.Sh., Panko, V.V., Desnica, D.I., Slivka, A.G., and Guranich, P.P., J. Phys. Chem. Solids 60, 1897 (1999).CrossRefGoogle Scholar
7.Studenyak, I.P., Kranjčec, M., Kovacs, Gy.Sh., Desnica-Frankovic, I.D., Panko, V.V., and Slivka, V.Yu., Mater. Res. Bull. 36 (2001, in press).CrossRefGoogle Scholar
8.Plyukhin, A.G. and Suslina, L.G., Fiz. Tverd. Tela 24, 2738 (1982).Google Scholar
9.Kranjčec, M., Studenyak, I.P., Kovacs, Gy.Sh., Desnica-Frankovic, I.D., Panko, V.V., and Guranich, P.P., J. Phys. Chem. Solids (2000, in press).Google Scholar
10.Studenyak, I.P., Kranjčec, M., Kovacs, Gy.S., Panko, V.V., Azhniuk, Yu.M., Desnica, D.I., Borets, O.M., and Voroshilov, Yu.V., Mater. Sci. Eng. B 52, 202 (1998).CrossRefGoogle Scholar
11.Oswald, F., Optik 16, 527 (1959).Google Scholar
12.Yang, Z., Homewood, K.P., Finney, M.S., Harry, M.A., and Reeson, K.J., J. Appl. Phys. 78, 1958 (1995).CrossRefGoogle Scholar
13.Kurik, M.V., Phys. Status Solidi A 8, 9 (1971).CrossRefGoogle Scholar
14.Sumi, H. and Sumi, A., J. Phys. Soc. Jpn. 56, 2211 (1987).CrossRefGoogle Scholar
15.O’Donnell, K.P. and Chen, X., Appl. Phys. Lett. 58, 2924 (1991).CrossRefGoogle Scholar
16.Cody, G.D., Semiconductors and Semimetals, edited by Pankove, J.I. (Academic, New York, 1984), Vol. 21B, Chap. 2.Google Scholar
17.Allen, P.B. and Cardona, M., Phys. Rev. B 23, 1495 (1981).CrossRefGoogle Scholar
18.Zametin, V.I., Yakubovsky, M.A., and Rubkin, L.M., Fiz. Tverd. Tela 21, 491 (1979).Google Scholar
19.Jaffe, E. and Zunger, A., Phys. Rev. B 29, 1882 (1984).CrossRefGoogle Scholar
20.Tinoco, T., Quintero, M., and Rincon, C., Phys. Rev. B 44, 1613 (1991).CrossRefGoogle Scholar
21.Van Vechten, J.A. and Bergstresser, T.K., Phys. Rev. B 1, 3351 (1970).CrossRefGoogle Scholar
22.Bernard, J.E. and Zunger, A., Phys. Rev. B 36, 3199 (1987).CrossRefGoogle Scholar
23.Dow, J.D. and Redfield, D., Phys. Rev. B 5, 594 (1972).CrossRefGoogle Scholar
24.Redfield, D., Phys. Rev. 130, 916 (1963).CrossRefGoogle Scholar
25.Samuel, L., Brada, Y., Burger, A., and Roth, M., Phys. Rev. 36, 1168, 1174 (1978).CrossRefGoogle Scholar
26.Skumanich, A., Frova, A., and Amer, N.M., Solid State Commun. 54, 597 (1985).CrossRefGoogle Scholar
27.Johnson, S.R. and Tiedje, T., J. Appl. Phys. 78, 5609 (1995).CrossRefGoogle Scholar
28.Frova, A. and Selloni, A., In Tetrahedrally-Bonded Amorphous Semiconductors, edited by Adler, D. and Fritsche, H. (Plenum, New York, 1985).Google Scholar