Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T13:23:30.475Z Has data issue: false hasContentIssue false

Friction anisotropy: A unique and intrinsic property of decagonal quasicrystals

Published online by Cambridge University Press:  31 January 2011

Jeong Young Park
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California—Berkeley, Berkeley, California 94720
D.F. Ogletree
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California—Berkeley, Berkeley, California 94720
M. Salmeron*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California—Berkeley, Berkeley, California 94720
C.J. Jenks
Affiliation:
Ames Laboratory & Department of Chemistry, Iowa State University, Ames, Iowa 50011
P.A. Thiel
Affiliation:
Ames Laboratory & Department of Chemistry, Iowa State University, Ames, Iowa 50011
J. Brenner
Affiliation:
Austrian Centre of Competence for Tribology Research GmbH, A-2700 Wiener Neustadt, Austria; and Austrian Research Centre-Seibersdorf Research GmbH, A-2444 Seibersdorf, Austria
J.M. Dubois
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie (LSG2M), Institut Jean Lamour [FR2797 Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Henri Poincaré (UHP)], Nancy-Université Ecole des Mines, Parc de Saurupt, F-54042 Nancy cedex, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We show that friction anisotropy is an intrinsic property of the atomic structure of Al–Ni–Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science309, 1354 (2005)]. Friction anisotropy is manifested in both nanometer-size contacts obtained with sharp atomic force microscope tips and macroscopic contacts produced in pin-on-disk tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction anisotropy when the quasicrystalline order is destroyed due to cumulative wear. These results reveal the intimate connection between the mechanical properties of these materials and their peculiar atomic structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D., Blech, I., Gratias, D.Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 1984CrossRefGoogle Scholar
2Kang, S.S., Dubois, J.M.von Stebut, J.: Tribological properties of quasicrystalline coatings. J. Mater. Res. 8, 2471 1993CrossRefGoogle Scholar
3Dubois, J-M.: Useful Quasicrystals World Scientific NJ 2005CrossRefGoogle Scholar
4Dubois, J.M., Kang, S.S.Vonstebut, J.: Quasi-crystalline low-friction coatings. J. Mater. Sci. Lett. 10, 537 1991CrossRefGoogle Scholar
5Rivier, N.: Nonstick quasi-crystalline coatings. J. Non-Cryst. Solids 153, 458 1993CrossRefGoogle Scholar
6Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J.Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354 2005CrossRefGoogle ScholarPubMed
7Persson, B.N.J., Carbone, G., Samoilov, V.N., Sivebaek, I.M., Tartaglino, U., Volokitin, A.I.Yang, C.: Contact mechanics, friction and adhesion with application to quasicrystals in Fundamentals of Friction and Wear edited by E. Gnecco and E. Meyer Springer Berlin, Heidelberg, Germany 2007 269–306Google Scholar
8Pinhero, P.J., Anderegg, J.W., Sordelet, D.J., Besser, M.F.Thiel, P.A.: Surface oxidation of Al–Cu–Fe alloys: A comparison of quasicrytalline and crystalline phases. Philos. Mag. B 79, 91 1999CrossRefGoogle Scholar
9Chang, S-L., Anderegg, J.W.Thiel, P.A.: Surface oxidation of an Al–Pd–Mn quasicrystal, characterised by XPS. J. Non-Cryst. Solids 195, 95 1996CrossRefGoogle Scholar
10Veys, D., Weisbecker, P., Fournée, V., Domenichini, B., Weber, S., Rapin, C.Dubois, J.M.: Aging of the surface of an Al–Cr–Fe approximant phase in ambient conditions: Chemical composition and physical properties in Quasicrystals 2003–Preparation, Properties, and Applications, edited by E. Belin-Ferré, M. Feuerbacher, Y. Ishii, and D.J. Sordelet (Mater. Res. Soc. Symp. Proc. 805, Warrendale, PA, 2004), LL8.8.1CrossRefGoogle Scholar
11Rouxel, D.Pigeat, P.: Surface oxidation and thin film preparation of AlCuFe quasicrystals. Prog. Surf. Sci. 81, 488 2006CrossRefGoogle Scholar
12Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J.Thiel, P.A.: Tribological properties of quasicrystals: Effect of aperiodic versus periodic surface order. Phys. Rev. B 74, 024203 2006CrossRefGoogle Scholar
13Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J.Thiel, P.A.: Atomic scale coexistence of periodic and quasiperiodic order in a 2-fold Al–Ni–Co decagonal quasicrystal surface. Phys. Rev. B 72, 220201 2005CrossRefGoogle Scholar
14Fisher, I.R., Kramer, M.J., Islam, Z., Ross, A.R., Kracher, A., Wiener, T., Sailer, M.J., Goldman, A.I.Canfield, P.C.: On the growth of decagonal Al–Ni–Co quasicrystals from the ternary melt. Philos. Mag. 79, 425 1999CrossRefGoogle Scholar
15Sader, J.E., Chon, J.W.M.Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967 1999CrossRefGoogle Scholar
16Dubois, J.M., Brunet, P., Costin, W.Merstallinger, A.: Friction and fretting on quasicrystals under vacuum. J. Non-Cryst. Solids 334, 475 2004CrossRefGoogle Scholar
17Park, J.Y., Ogletree, D.F., Salmeron, M., Jenks, C.J.Thiel, P.A.: Friction and adhesion properties of clean and oxidized Al–Ni–Co decagonal quasicrystals: A UHV atomic force microscopy / scanning tunneling microscopy study. Tribology Lett. 17, 629 2004CrossRefGoogle Scholar
18Wu, J.S., Brien, V., Brunet, P., Dong, C.Dubois, J.M.: Electron microscopy study of scratch-induced surface microstructures in an Al–Cu–Fe icosahedral quasicrystal. Philos. Mag. A 80, 1645 2000CrossRefGoogle Scholar
19Wittmann, R., Urban, K., Schandl, M.Hornbogen, E.: Mechanical properties of single-quasi-crystalline AlCuCoSi. J. Mater. Res. 6, 1165 1991CrossRefGoogle Scholar
20Martin, S., Hebard, A.F., Kortan, A.R.Thiel, F.A.: Transport-properties of Al65Cu15Co20 and Al70Ni15Co15 decagonal quasi-crystals. Phys. Rev. Lett. 67, 719 1991CrossRefGoogle Scholar
21Zhang, D.L., Cao, S.C., Wang, Y.P., Lu, L., Wang, X.M., Ma, X.L.Kuo, K.H.: Anisotropic thermal-conductivity of the 2D single quasi-crystals: Al65Ni20Co15 and Al62Si3Cu20Co15. Phys. Rev. Lett. 66, 2778 1991Google Scholar
22Theis, W., Sharma, H.R., Franke, K.J.Rieder, K.H.: Surface photons in quasicrystals. Prog. Surf. Sci. 75, 227 2004CrossRefGoogle Scholar