Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:50:42.175Z Has data issue: false hasContentIssue false

Electron microscopy study of interfacial structure and reaction of Yba2Cu3O7/Y-ZrO2 films on LaAlO3 substrates

Published online by Cambridge University Press:  31 January 2011

J. Y. Dai
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
F. H. Kaatz
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
P. R. Markworth
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
D. B. Buchholz
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
X. Liu
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
W. A. Chiou
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

The detailed structure and interfacial reaction of epitaxial Yba2Cu3O7/Y-ZrO2 (YBCO/YSZ) films grown by chemical vapor deposition (CVD) on LaAlO3 (LAO) substrates are investigated by means of high-resolution electron microscopy (HREM), analytical transmission electron microscopy, and scanning transmission electron microscopy (STEM). The epitaxial relations of YBCO/YSZ/LAO are [100]YBCO // [110]YSZ // [100]LAO and (001)YBCO // (001)YSZ // (001)LAO. The optimum atomic configuration at the YSZ/LAO interface, in which oxygen is the first atomic layer on LAO, is proposed by using HREM combined with image simulation based on the atomic structure models of the interface. Near the YBCO/YSZ interface, two localized interfacial reaction products are formed: (i) a Y-rich modulated ZrO2 structure at the surface of the YSZ film, which may be caused by the diffusion of Y into the YSZ grains; (ii) an intergranular BaZrO3 phase formed by the diffusion of Ba along the columnar grain boundaries of the YSZ film during YBCO growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).CrossRefGoogle Scholar
2.Goyal, A., Norton, D. P., Budai, J. D., Paranthaman, M., Specht, E. D., Kroeger, D. M., Christen, D. K., He, Q., Saffian, B., List, F. A., Lee, D. F., Martin, P. M., Clabunde, C. E., Hartfield, E., and Sikka, V. K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
3.Dimos, D., Chaaudhari, P., Mannhart, J., and LeGroves, F. K., Phys. Rev. Lett. 61, 1653 (1988).CrossRefGoogle Scholar
4.Dimos, D., Chaaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
5.Wu, X. D., Foltyn, S. R., Arendt, P., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, Y., and Peterson, D. E., Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar
6.Wu, X. D., Foltyn, S. R., Arendt, P., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
7.Findikoglu, A. T., Arendt, P. N., Foltyn, S. R., Groves, J. R., Jia, Q. X., Peterson, E. J., Bulaevskii, L., Maley, M. P., and Reagor, D. W., Appl. Phys. Lett. 70, 3293 (1997).CrossRefGoogle Scholar
8.Holzshuh, H. and Suhr, H., Appl. Phys. Lett. 59, 470 (1991).CrossRefGoogle Scholar
9.Matsuno, S., Umemura, T., Uchikawa, F., and Ikeda, B., Jpn. J. Appl. Phys. 34, 2293 (1995).CrossRefGoogle Scholar
10.Duray, S. J., Buchholz, D. B., Song, S. N., Richeson, D. S., Ketterson, J. B., Marks, T. J., and Chang, R. P. H., Appl. Phys. Lett. 59, 1503 (1991).CrossRefGoogle Scholar
11.Jia, Q. X., Wu, X. D., Zhou, D. S., Foltyn, S. R., Tiwari, P., Peterson, D. E., and Mitchell, T. E., Philos. Mag. Lett. 72, 385 (1995).CrossRefGoogle Scholar
12.Cima, M. J., Schneider, J. S., Peterson, S. C., and Coblenz, W., Appl. Phys. Lett. 53, 708 (1988).CrossRefGoogle Scholar
13.Alarco, J. A., Brorsson, G., Olin, H., and Olsson, E., J. Appl. Phys. 75, 3202 (1994).CrossRefGoogle Scholar
14.Hwang, D. M., Ying, Q. Y., and Kwok, H. S., Appl. Phys. Lett. 58, 2429 (1991).CrossRefGoogle Scholar
15.Gao, J., Wong, W. H., and Xhie, J., Appl. Phys. Lett. 67, 2232 (1995).CrossRefGoogle Scholar
16.Stadelman, P., Ultramicroscopy 31, 131 (1987).CrossRefGoogle Scholar
17.Knauss, D. and Mader, W., Ultramicroscopy 37, 247 (1991).CrossRefGoogle Scholar
18.Dai, J. Y., Yu, Y. D., Zhang, G. J., Li, D. X., Wang, Y. G., and Ye, H. Q., Philos. Mag. A. 74, 269 (1996).CrossRefGoogle Scholar
19.Stubican, V. S., Hink, R. C., and Ray, S. P., J. Am. Ceram. Soc. 61, 17 (1978).CrossRefGoogle Scholar
20.Suzuki, S., Tanaka, M., and Ishigame, M., Jpn. J. Appl. Phys. 24, 401 (1985).CrossRefGoogle Scholar
21.Suzuki, S., Tanaka, M., and Ishigame, M., J. Phys. C: Solid State Phys. 20, 2963 (1987).CrossRefGoogle Scholar
22.Suzuki, S., Tanaka, M., and Ishigame, M., Jpn. J. Appl. Phys. 26, 1983 (1987).CrossRefGoogle Scholar