Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T21:03:52.919Z Has data issue: false hasContentIssue false

Effusion of hydrogen from proton implanted ceramic YBa2Cu3O7−x during annealing in oxygen atmosphere

Published online by Cambridge University Press:  31 January 2011

Katsuhiro Yokota
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Kazuhiro Hatanaka
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Takeshi Kura
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Saichi Katayama
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Mitsukazu Ochi
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Mitsuaki Murakami
Affiliation:
Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan
Akiyoshi Chayahara
Affiliation:
Government Industrial Research Institute Osaka, Ikeda, Osaka 563, Japan
Mamoru Satho
Affiliation:
Government Industrial Research Institute Osaka, Ikeda, Osaka 563, Japan
Get access

Abstract

Hydrogen implanted into ceramic YBa2Cu3O7−x (YBCO) with a dose of 1 × 1017 H+ cm−2 started to effuse as molecular hydrogen from the YBCO to atmosphere at a temperature of 200 °C, effuse predominantly as water by reacting with oxygen at temperatures of 300–700 °C, and again effuse as molecular hydrogen at temperatures above 800 °C. The improvement of the superconducting properties of the proton implanted YBCO occurred at annealing temperatures for which implanted hydrogen effused predominantly as water by reacting with oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Reilly, J. J., Suenaga, M., Johnson, J. R., Thompson, P., and Moodenbaugh, A. R., Phys. Rev. B 36, 5694 (1987).CrossRefGoogle Scholar
2.Xiong, G. C., Li, H. C., Linker, G., and Meyer, O., Phys. Rev. B 38, 240 (1988).CrossRefGoogle Scholar
3.Yokota, K., Kura, T., Katayama, S., Chayahara, A., and Satho, M., Nucl. Instrum. Methods B59/60, 1431 (1991).Google Scholar
4.Kwok, W. K., Crabtree, G. W., Umezawa, A., Veal, B. W., Jorgensen, J. D., Malik, S. K., Nowicki, L. J., Paulikas, A. P., and Nunez, L., Phys. Rev. B 37, 106 (1988).CrossRefGoogle Scholar
5.Harwell, B. S., Ion Implantation Range Data for Silicon and Germanium Device Technologies (Learned Information, Oxford, 1977), Chap. 2.Google Scholar
6.Vedeneyev, V. I., Gurvich, L. V., Kondrat'yen, V. N., Medvedev, V. A., and Frankevich, Ye. L., Bond Energies Ionization Potentials and Electron Affinities (Edward Arnold, London, 1966), Table I.Google Scholar
7.Lonsdale, K., International Tables for X-ray Crystallography (The Kynoch Press, Birmingham, 1974), Vol. 3.Google Scholar
8. Powder Diffraction File (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1988), 381434.Google Scholar
9.Xiong, G. C., Li, H. C., Linker, G., and Meyer, O., Phys. Rev. B 38, 240 (1988).CrossRefGoogle Scholar
10.Meyer, O., Egner, B., Geerk, J., Gerber, R., Linker, G., Weschenfelder, F., Xi, X. X., and Xiong, G. C., Nucl. Instrum. Methods B 37/38, 917 (1989).CrossRefGoogle Scholar
11.Yoshida, A., Tamura, H., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 53, 811 (1988).CrossRefGoogle Scholar
12.Sugai, S., Phys. Rev. 36, 7133 (1987).CrossRefGoogle Scholar
13.Yokota, K., Kura, T., Ochi, M., and Katayama, S., Jpn. J. Appl. Phys. 29, L1425 (1990).CrossRefGoogle Scholar