Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T08:54:28.975Z Has data issue: false hasContentIssue false

Effect of abrasive material properties on polishing rate selectivity of nitrogen-doped Ge2Sb2Te5 to SiO2 film in chemical mechanical polishing

Published online by Cambridge University Press:  31 January 2011

Jin-Hyung Park
Affiliation:
Nano Silicon-on-Insulator (SOI) Process Laboratory, Hanyang University, Seoul 133-791, Korea
Hao Cui
Affiliation:
Nano Silicon-on-Insulator (SOI) Process Laboratory, Hanyang University, Seoul 133-791, Korea
Sok-Ho Yi
Affiliation:
Nano Silicon-on-Insulator (SOI) Process Laboratory, Hanyang University, Seoul 133-791, Korea
Jea-Gun Park*
Affiliation:
Nano Silicon-on-Insulator (SOI) Process Laboratory, Hanyang University, Seoul 133-791, Korea
Ungyu Paik*
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133-791, Korea
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We investigated the polishing rate and selectivity of nitrogen-doped Ge2Sb2Te5 (NGST) to SiO2 film for different abrasive materials (colloidal silica, fumed silica, and ceria abrasives). They both were strongly dependant on abrasive material properties. The polishing rate of nitrogen-doped NGST decreased in the order ceria, fumed silica, and colloidal silica abrasives, which was determined by abrasive material properties, such as abrasive hardness, crystal structure, and primary and secondary abrasive sizes. In addition, the polishing rate slope of NGST film was not significantly different for different abrasive materials, indicating that the polishing of NGST film is mechanical dominant polishing. In contrast, the polishing rate slope of SiO2 film decreased in the order ceria, fumed silica, and colloidal silica abrasives, indicating that the polishing of SiO2 film is chemical dominant polishing. Furthermore, the difference in polishing rate slopes between NGST and SiO2 film gave a polishing rate selectivity of NGST to SiO2 film higher than 100:1 with colloidal silica abrasive.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ryu, S.W., Oh, J.H., Choi, B.J., Hwang, S.Y., Hong, S.K., Hwang, C.S., Kim, H.J.: SiO2 incorporation effects in Ge2Sb2Te5 films prepared by magnetron sputtering for phase change random-access memory devices. Electrochem. Solid-State Lett. 9(8), G259 2006CrossRefGoogle Scholar
2Hwang, Y.N., Lee, S.H., Ahn, S.J., Lee, S.Y., Ryoo, K.C., Hong, H.S., Koo, H.C., Yeung, F., Oh, J.H., Kim, H.J., Jeong, W.C., Park, J.H., Horii, H., Ha, Y.H., Yi, J.H., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K.: Writing current reduction for high-density phase-change RAM. IEDM Tech. Dig. 37 1.1 2003Google Scholar
3Chen, M., Rubin, K.A., Barton, R.W.: Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502 1986Google Scholar
4Weidenhof, V., Friedrich, I., Ziegler, S., Wuttig, M.: Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5. J. Appl. Phys. 89, 3168 2001CrossRefGoogle Scholar
5Lai, S.: Current status of the phase change memory and its future. IEDM Tech. Dig. 10 1.1 2003Google Scholar
6Siegel, J., Schropp, A., Solis, J., Afonso, C.N., Wuttig, M.: Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. Appl. Phys. Lett. 84, 2250 2004Google Scholar
7Jeong, T.H., Kim, M.R., Seo, H., Park, J.W., Yeon, C.: Crystal structure and microstructure of nitrogen-doped Ge2Sb2Te5 thin film. Jpn. J. Appl. Phys., Part 1 39, 2775 2000CrossRefGoogle Scholar
8Privitera, S., Rimini, E., Zonca, R.: Crystal nucleation and growth processes in Ge2Sb2Te5. Appl. Phys. Lett. 85, 3044 2004CrossRefGoogle Scholar
9Horii, H., Yi, J.H., Park, J.H., Ha, Y.H., Baek, I.G., Park, S.O., Hwang, Y.N., Lee, S.H., Kim, Y.T., Lee, K.H., Chung, U-I., Moon, J.T.: A novel cell technology using N-doped GeSbTe films for phase change RAM. VLSI Symp. Tech. Dig. 177 2003Google Scholar
10Ahn, S.J., Song, Y.J., Jeong, C.W., Shin, J.M., Fai, Y., Hwang, Y.N., Lee, S.H., Ryoo, K.C., Lee, S.Y., Park, J.H., Horii, H., Ha, Y.H., Yi, J.H., Kuh, B.J., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K., Ryu, B.I.: Highly manufacturable high density phase change memory of 64 Mb and beyond. IEDM Tech. Dig. 907 2004Google Scholar
11Kim, Y.K., Jeong, K., Cho, M.H., Hwang, U.K., Jeong, H.S., Kim, K.: Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped Ge2Sb2Te5 during phase transition. Appl. Phys. Lett. 90, 171920 2007Google Scholar
12Lee, J.I., Park, H., Cho, S.L., Park, Y.L., Bae, B.J., Park, J.H., Park, J.S., An, H.G., Bae, J.S., Ahn, D.H., Kim, Y.T., Horii, H., Song, S.A., Shin, J.C., Park, S.O., Kim, H.S., Chung, U-I., Moon, J.T., Ryu, B.I.: Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation in Proceedings of IEEE Symposium on VLSI Technology Kyoto Japan 2007 102Google Scholar
13Tompa, G.S., Sun, S., Rice, C.E., Cuchiaro, J., Dons, E. Metal-organic chemical vapor deposition (MOCVD) of GeSbTe-based chalcogenide thin films in Materials and Processes for Nonvolatile Memories II,edited by T. Li, Y. Fujisaki, J.M. Slaughter, and D. Tsoukalas (Mater. Res. Symp. Proc. 997, Warrendale, PA, 2007 110–08Google Scholar
14Zhang, K.L., Liu, Q.B., Song, Z.T., Feng, S.L., Chen, B.: Study on chemical mechanical polishing of GeSbTe for chalcogenide phase change memory in Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology Shanghai China 2006 821Google Scholar
15Cook, L.M.: Chemical processes in glass polishing. J. Non-Cryst. Solids 120, 154 1990Google Scholar
16Kim, Y.H., Lee, K.J., Paik, U., Park, J.G. High-removal selectivity through interaction between polyacrylamide and SiO2film in poly isolation chemical mechanical planarization in Proceedings of International Conference on Surfaces Coatings and Nanostructured Materials Algarve Portugal 2007Google Scholar
17Cho, K.C., Jeon, H., Park, J.G.: Effect of the hydroxyl-ethyl-cellulose concentration in a silicon wafer polishing slurry on the wafer surface roughness. J. Korean Phys. Soc. 48, L507 2006Google Scholar
18Hackley, V.A.: Colloidal processing of silicon nitride with poly(acrylic acid): I. Adsorption and electrostatic interactions. J. Am. Ceram. Soc. 80, 2315 1997CrossRefGoogle Scholar
19Hoshino, T., Kurata, Y., Terasaki, Y., Susa, K.: Mechanism of polishing of SiO2 films by CeO2 particles. J. Non-Cryst. Solids 283, 129 2001CrossRefGoogle Scholar
20Lee, J.W., Yoon, B.U., Hah, S., Moon, J.T. A planarization model in chemical mechanical polishing of silicon oxide using high selective CeO2slurry in Chemical-Mechanical Polishing 2001—Advances and Future Challenges,edited by S.V. Babu, K.C. Cadien, and H. Yano (Mater. Res. Soc. Symp. Proc. 671, Warrendale, PA, 2001), M5.3CrossRefGoogle Scholar
21Abiade, J.T., Yeruva, S., Moudgil, B., Kumar, D., Singh, R.K.: Characterization of the chemical effects of ceria slurries for chemical mechanical polishing in Chemical-Mechanical Planarization—Integration, Technology and Reliability,, edited by A. Kumar, J.A. Lee, Y.S. Obeng, I. Vos, and E.C. Johns (Mater. Res. Soc. Symp. Proc. 867, Warrendale,PA, 2005), W8.3Google Scholar
22Abiade, J.T., Choi, W., Khosla, V., Singh, R.K.: Investigation and control of chemical and surface chemical effects during dielectric CMP in Advances in Chemical-Mechanical Polishing,, edited by D.S. Boning, J.W. Bartha, A. Philipossian, G. Shinn, and I. Vos (Mater. Res. Soc. Symp. Proc. 816, Warrendale,PA, 2004), K9.5CrossRefGoogle Scholar
23Steigerwald, J.M., Murarka, S.P., Gutmann, R.J.: Chemical Mechanical Planarization of Microelectronic Materials (John Wiley & Sons, New York, 1997Google Scholar
24Preston, F.W.: The theory and design of plate glass polishing machines. J. Soc. Glass Technol. 11, 214 1927Google Scholar