Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T02:54:35.375Z Has data issue: false hasContentIssue false

Defect clustering in GaN irradiated with O+ ions

Published online by Cambridge University Press:  31 January 2011

C. M. Wang*
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
W. Jiang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
L. E. Thomas
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Transmission electron microscopy (TEM) was used to study microstructures formed in GaN irradiated with 600-keV O+ ions at room temperature. Three types of defect clusters were identified in the irradiated GaN: (i) basal-plane stacking faults with dimensions ranging from 5 to 30 nm, (ii) pyramidal dislocation loops, and (iii) local regions of highly disordered material. High-resolution TEM imaging clearly revealed that one type of the basal-plane stacking faults corresponded to insertion of one extra Ga–N basal plane in the otherwise perfect GaN lattice. The interpretation of these results indicated that interstitials of both Ga and N preferentially condensed on the basal plane to form a new layer of Ga–N under these irradiation conditions. The formation of these extended defects and their interactions with the point defects produced during irradiation contributed to a dramatic increase in the dynamic recovery of point defects in GaN at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pearton, S.J., Zolper, J.C., Shul, R.J., and Ren, F., J. Appl. Phys. 86, 1 (1999).CrossRefGoogle Scholar
2.Weber, Z.L., Kisielowski, C., Ruvimov, S., Chen, Y., Washburn, J., Grzegory, I., M. Bockowski, Jun, J., and Porowski, S., J. Electron. Mater. 25, 1545 (1996).CrossRefGoogle Scholar
3.Ruvimov, S., Weber, Z.L., Susuki, T., Ager, J.W. III, Washburn, J., Krueger, J., Kisielowski, C., Weber, E.R., Amano, H., and Akasaki, I., Appl. Phys. Lett. 69, 990 (1996).CrossRefGoogle Scholar
4.Kucheyev, S.L., Williams, J.S., Jagadish, C., Li, G., and Pearton, S.J., Appl. Phys. Lett. 76, 3899 (2000).CrossRefGoogle Scholar
5.Kucheyev, S.L., Williams, J.S., Zou, J., Jagadish, C., and Li, G., Appl. Phys. Lett. 78, 1373 (2001).CrossRefGoogle Scholar
6.Kucheyev, S.O., Williams, J.S., Jagadish, C., Zou, J., and Li, G., Phys. Rev. B 62, 7510 (2000).CrossRefGoogle Scholar
7.Kucheyev, S.O., Williams, J.S., and Pearton, S.J., Mater. Sci. Eng. R 33, 51 (2001).CrossRefGoogle Scholar
8.Wampler, W.R. and Myers, S.M., MRS Internet J. Nitride Semicond. Res. 4S1, G3.73 (1999). http://nar.mij.mrs.org/4S1/G3.73/Google Scholar
9.Jiang, W., Weber, W.J., Thevuthasan, S., Exarhos, G.J., and Bozlee, B.J., MRS Internet J. Nitride Semicond. Res. 4S1, G6.15 (1999).Google Scholar
10.Jiang, W., Weber, W.J., and Thevuthasan, S., J. Appl. Phys. 87, 7671 (2000).CrossRefGoogle Scholar
11.Myers, S.M., Headley, T.J., Hills, C.R., Han, J., Petersen, G.A., Seager, C.H., and Wampler, W.R., MRS Internet J. Nitride Semicond. Res. 4S1, G5.8 (1999), http://nsr.mij.mrs.org/4S1/G3.73/.Google Scholar
12.Xin, Y., Pennycook, S.J., Browning, N.D., Nellist, P.D., Sivanathan, S., Omnes, F., Beaumont, B., Faurie, J.P., and P. Gibart, Appl. Phys. Lett. 72, 2680 (1998).CrossRefGoogle Scholar
13.Zolper, J.C., Wilson, R.B., Pearton, S.J., and Stall, R.A.. Appl. Phys. Lett. 71, 1945 (1996).CrossRefGoogle Scholar
14.Ziegler, J.F., Biearsack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
15.Kucheyev, S.O., Williams, J.S., Jagadish, C., Zou, J., Li, G., and Titov, A.I., Phys. Rev. B. 64, 035202 (2001).CrossRefGoogle Scholar
16.Jiang, W., Weber, W.J., Thevuthasan, S., and Shutthanandan, V., Nucl. Instrum. Methods Phys. Res. B 191, 509 (2002).CrossRefGoogle Scholar
17.Hull, D. and Bacon, D.J., Introduction to Dislocations, 3rd ed., Intl. Series on Materials Science and Technology (Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Torento, Pergamon Press, 1984), p. 112.Google Scholar