Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:50:07.580Z Has data issue: false hasContentIssue false

Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire

Published online by Cambridge University Press:  31 January 2011

A. Goyal
Affiliation:
Metals & Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6116
D. P. Norton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6116
D. M. Kroeger
Affiliation:
Metals & Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
M. Paranthaman
Affiliation:
Chemistry and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
E. D. Specht
Affiliation:
Metals & Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
Q. He
Affiliation:
University of Tennessee, Knoxville, Tennessee 37996–1200
B. Saffian
Affiliation:
University of Tennessee, Knoxville, Tennessee 37996–1200
F. A. List
Affiliation:
Metals & Ceramics Division, Oak Ridge Laboratory, Oak Ridge, Tennessee 37831–6116
D. F. Lee
Affiliation:
Metals & Ceramics Division, Oak Ridge Laboratory, Oak Ridge, Tennessee 37831–6116
E. Hatfield
Affiliation:
Metals & Ceramics Division, Oak Ridge Laboratory, Oak Ridge, Tennessee 37831–6116
P. M. Martin
Affiliation:
Metals & Ceramics Division, Oak Ridge Laboratory, Oak Ridge, Tennessee 37831–6116
C. E. Klabunde
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6116
J. Mathis
Affiliation:
Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee 37831
C. Park
Affiliation:
Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee 37831
Get access

Abstract

Much of the conductor development effort in the last decade has focused on optimizing the processing of (Bi, Pb)2Sr2Ca2Cu3Ox oxide-powder-in-tube conductors and (Bi, Pb)2Sr2CaCu2O8 (Bi-2212) and TlBa2Ca2Cu3Ox thick film conductors. It is demonstrated that in each of these conductors, critical current densities are dictated by the grain boundary misorientation distributions (GBMD's). Percolative networks of low-angle boundaries with fractions consistent with the active cross-sectional area of the conductor exist in each of these conductors. Further enhancements in the properties require increased numbers of small-angle grain boundaries. Given the processing methods used to fabricate these materials, no clear route employing a simple modification of the established processing method is apparent. To address this need, conductors with controlled or predetermined GBMD's are necessary. Development of biaxial texture appears to be the only possible way to increase the number of small-angle boundaries in a practical and controllable manner. We summarize in this paper recent results obtained on epitaxial superconducting films on rolling-assisted-biaxially-textured-substrates (RABiTS). This technique uses well established, industrially scalable, thermomechanical processes to impart a strong biaxial texture to a base metal. This is followed by vapor deposition of epitaxial buffer layers (metal and/or ceramic) to yield structurally and chemically compatible surfaces. Epitaxial YBa2Cu3O7–δ films grown using laser ablation on such substrates have critical current densities exceeding 106 A/cm2 at 77 K in zero field and have a field dependence similar to epitaxial films on single crystal ceramic substrates. Deposited conductors made using this technique offer a potential route for the fabrication of the next generation high temperature superconducting (HTS) wire capable of carrying high currents in high magnetic fields and at elevated temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988); D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3.Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
4.Kumakura, H., Kitaguchi, H., Togano, K., Maeda, H., Shimoyama, J., Morimoto, H., Nomura, K., and Seido, H., Adv. Supercond. IV, 547 (1992).Google Scholar
5.DeLuca, J. A., Karas, P. L., Tkaczyk, J. E., Bednarczyk, P. J., Garbauskas, M. F., Briant, C. L., and Sorensen, D. B., Physica C 205, 21 (1993); J. E. Tkaczyk, J. A. DeLuca, P. L. Karas, P. J. Bednarczyk, M. F. Garbauskas, R. H. Arendt, K. W. Lay, and J. S. Moodera, Appl. Phys. Lett. 61, 610 (1992).CrossRefGoogle Scholar
6.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992); Y. Iijima, K. Onabe, N. Futaki, N. Sadakata, and O. Kohno, J. Appl. Phys. Lett. 74, 1905 (1993).CrossRefGoogle Scholar
7.Reade, R. P., Burdahl, P., Russo, R. E., and Garrison, S. M., Appl. Phys. Lett. 61, 2231 (1993).CrossRefGoogle Scholar
8. American Superconductor Corporation, Westborough, MA; Intermagnetics General Corporation, Latham, NY, and Sumitomo Electric Industries, Osaka, Japan.Google Scholar
9.Goyal, A., Norton, D. P., Budai, J. D., Paranthaman, M., Specht, E. D., Kroeger, D. M., Christen, D. K., He, Q., Saffian, B., List, F. A., Lee, D. F., Martin, P. M., Klabunde, C. E., Hatfield, E., and Sikka, V. K., Appl. Phys. Lett. 69, 1795 (1996); A. Goyal et al., patent pending.CrossRefGoogle Scholar
10.Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).CrossRefGoogle Scholar
11.DeLuca, J. A., Karas, P. L., Briant, C. L., Tkacyzk, J. E., and Goyal, A., in Processing of Long Lengths of Superconductors, edited by Balachandran, U., Collings, E. W., and , A. (The Minerals, Metals & Materials Society, Warrendale, PA, 1994), p. 231.Google Scholar
12.Kroeger, D. M., Goyal, A., Specht, E. D., Wang, Z. L., Tkacyzk, J. E., Sutliff, J. A., and DeLuca, J. A., Appl. Phys. Lett. 64, 106 (1994); A. Goyal, E. D. Specht, Z. L. Wang, D. M. Kroeger, J. A. Sutliff, J. E. Tkacyzk, J. A. DeLuca, L. Masur, and G. N. Riley, Jr., J. Electron. Mater. 23, 1191 (1994).CrossRefGoogle Scholar
13.Specht, E. D., Goyal, A., Kroeger, D. M., DeLuca, J. A., Tkacyzk, J. E., Briant, C. L., and Sutliff, J. A., Physica C 242, 164 (1995).CrossRefGoogle Scholar
14.Goyal, A., Specht, E. D., Christen, D. K., Kroeger, D. M., Pashitski, A., Polyanksii, A. A., and Larbalestier, D. C., JOM 48, 24 (1996).CrossRefGoogle Scholar
15.Brandon, D. G., Acta Metall. 14, 1479 (1956).CrossRefGoogle Scholar
16.Nabatame, T., Koike, S., Hyun, O. B., Hirabayashi, I., Suhara, H., and Nakamura, K., Appl. Phys. Lett. 65, 776 (1994).CrossRefGoogle Scholar
17.Pashitski, A. E., Gurevich, A., Polyanksii, A. A., Larbalestier, D. C., Goyal, A., Specht, E. D., Kroeger, D. M., DeLuca, J. A., and Tkacyzk, J. E., Science 275, 367 (1997).CrossRefGoogle Scholar
18.Goyal, A., Specht, E. D., Kroeger, D. M., Tkacyzk, J. E., Briant, C. L., and DeLuca, J. A., Appl. Phys. Lett. 67, 2563 (1996); C. L. Briant, J. A. DeLuca, P. L. Karas, M. F. Garbauskas, J. A. Sutliff, and A. Goyal, J. Mater. Res. 10, 823 (1995).CrossRefGoogle Scholar
19.Sandhage, K. H., Riley, G. N. Jr, and Carter, W. L., JOM 3, 21 (1991).CrossRefGoogle Scholar
20.Goyal, A., Specht, E. D., Kroeger, D. M., Mason, T. A., Dingley, D. J., Riley, G. N. Jr, and Rupich, M. W., Appl. Phys. Lett. 66, 2903 (1995).CrossRefGoogle Scholar
21.Goyal, A., Specht, E. D., Wang, Z. L., and Kroeger, D. M., Ultramicroscopy (1997, in press).Google Scholar
22.Goyal, A., Specht, E. D., and Mason, T. A., Appl. Phys. Lett. 68, 711 (1996).CrossRefGoogle Scholar
23.Specht, E. D., Goyal, A., and Kroeger, D. M., Phys. Rev. B 53, 3585 (1996).CrossRefGoogle Scholar
24.Wu, X. D., Foltyn, S.R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
25.Fukutomi, M., Aoki, S., Kimori, K., Chatterjee, R., Togano, K., and Maeda, H., Physica C 231, 113 (1994).CrossRefGoogle Scholar
26.Zhang, J., Gardener, R. A., Kirlin, P. S., Boerstler, R. W., and Steinback, J., Appl. Phys. Lett. 61, 2884 (1992).CrossRefGoogle Scholar
27.Budai, J. D., Young, R. T., and Chao, B. S., Appl. Phys. Lett. 62, 1836 (1993).CrossRefGoogle Scholar
28.Wang, C. A., Ren, Z. F., Wang, J. H., and Miller, D. J., Physica C 245, 171 (1995).CrossRefGoogle Scholar
29.Safar, H., Cho, J. H., Fleshler, S., Maley, M. P., Willis, J. O., Coulter, J. Y., Ullmann, J. L., Lisowski, P. W., Riley, G. N. Jr, Rupich, M. W., Thompson, J. R., and Krusin-Elbaum, L., Appl. Phys. Lett. 67, 130 (1995).CrossRefGoogle Scholar
30.Paranthaman, M., Goyal, A., List, F. A., Specht, E. D., Lee, D. F., Martin, P. M., He, Q., Christen, D. K., Norton, D. P., and Budai, J. D., Physica C 275, 266 (1997).CrossRefGoogle Scholar
31.He, Q., Christen, D. K., Budai, J. D., Specht, E. D., Lee, D. F., Goyal, A., Norton, D. P., Paranthaman, M., List, F. A., and Kroeger, D. M., Physica C 275, 155 (1997).CrossRefGoogle Scholar
32.Haldar, P., Hoehn, J. G. Jr, Rice, J. A., Walker, M. S., and Motowidlo, L. R., Appl. Phys. Lett. 61, 604 (1992).CrossRefGoogle Scholar
33.Tilley, D. R. and Tilley, J., Superfluidity and Superconductivity, 3rd ed. (IOP Publishing, Bristol, England, 1990), p. 235.Google Scholar
34.Christen, D. K., Norton, D. P., Goyal, A., Budai, J. D., Feenstra, R., He, Q., Klabunde, C. E., Kroeger, D. M., Lee, D. F., List, F. A., Paranthaman, M., Saffian, B., Specht, E. D., and Chishlom, M. F., in Proceedings of the International Workshop on Critical Currents in Superconductors for Practical Applications, Xi'an, China, March 6–8, 1997 (in press).Google Scholar
35.Hosaka, M., Iijima, Y., Sadakata, N., Saitoh, T., Kohno, O., and Yoshitomi, J., in Proceedings of the International Superconductivity Symposium (ISS), Sapporo, Oct. 21–14, 1997 (in press).Google Scholar
36.Hasegawa, K., Yoshida, N., Fujino, K., Mukai, H., Hayashi, K., Sato, K., Ohkuma, T., Honjyo, S., Ishii, H., and Hara, T., in Proceedings of the International Superconductivity Symposium (ISS), Sapporo, Oct. 21–14, 1997 (in press).Google Scholar