Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T21:15:28.009Z Has data issue: false hasContentIssue false

Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment

Published online by Cambridge University Press:  12 November 2012

E. Hampp
Affiliation:
Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544; and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
R. Botah
Affiliation:
Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
O.S. Odusanya
Affiliation:
Sheda Science and Technology Complex, Gwagwalada, Federal Capital Territory, Abuja, Nigeria
N. Anuku
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544; and Bronx Community College, Bronx, New York 10453
K.A. Malatesta
Affiliation:
Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544; and Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
W.O. Soboyejo*
Affiliation:
Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544; and Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Gold nanoparticles (AuNPs) were biosynthesized using Bacillus megaterium, a common soil bacterium. Transmission electron microscopy images revealed that well-developed, spherical, homogeneous nanoparticles are formed extracellularly in reactions containing aqueous chloroaurate ions and conditioned medium at pH 4. Atomic force microscopy measurements showed that adhesion forces between biosynthesized AuNPs and breast cancer cells were almost six times greater than adhesion forces between biosynthesized AuNPs and normal breast cells. Furthermore, adhesion forces of biosynthesized AuNPs to breast cancer cells were three times greater than adhesion forces between chemically synthesized AuNPs and the same breast cancer cells. Finally, adhesion forces between biosynthesized AuNPs conjugated to breast-specific antibodies (AuNP-Ab conjugates), and breast cancer cells were almost five times greater than adhesion forces between unconjugated AuNPs and breast cancer cells. The implications of the results are discussed for the development of nanostructures for the targeted detection and treatment of breast cancer.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M.J.: Cancer statistics, 2009. CA Cancer J. Clin. 59, 225 (2009).CrossRefGoogle ScholarPubMed
Meng, J., Fan, J., Galiana, G., Branca, R.T., Clasen, P.L., Ma, S., Zhou, J., Leuschner, C., Kumar, C.S.S.R., Hormes, J., Otiti, T., Beye, A.C., Harmer, M.P., Kiely, C.J., Warren, W., Haataja, M.P., and Soboyejo, W.O.: LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mater. Sci. Eng., C 29, 1467 (2009).CrossRefGoogle Scholar
Tanaka, T., Decuzzi, P., Cristofanilli, M., Sakamoto, J.H., Tasciotti, E., Robertson, F.M., and Ferrari, M.: Nanotechnology for breast cancer therapy. Biomed. Microdevices 11, 49 (2009).CrossRefGoogle ScholarPubMed
Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006).CrossRefGoogle ScholarPubMed
El-Sayed, I.H., Huang, X., and El-Sayed, M.A.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129 (2006).CrossRefGoogle ScholarPubMed
Bhattacharya, R., Patra, C.R., Earl, A., Wang, S., Katarya, A., Lu, L., Kizhakkedathu, J.N., Yaszemski, M.J., Greipp, P.R., Mukhopadhyay, D., and Mukherjee, P.: Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomed. Nanotechnol. Biol. Med. 3, 224 (2007).CrossRefGoogle Scholar
Mulvaney, P., Perera, J.M., Biggs, S., Grieser, F., and Stevens, G.W.: The direct measurement of the forces of interaction between a colloid particle and an oil droplet. J. Colloid Interface Sci. 183, 614 (1996).CrossRefGoogle Scholar
Weissleder, R.: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001).CrossRefGoogle ScholarPubMed
Loo, C., Lowery, A., Halas, N., West, J., and Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709 (2005).CrossRefGoogle ScholarPubMed
Rajadhyaksha, M., Grossman, M., Esterowitz, D., Webb, R.H., and Anderson, R.R.: In vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast. J. Invest. Dermatol. 104, 946 (1995).CrossRefGoogle ScholarPubMed
Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., and West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 (2003).CrossRefGoogle ScholarPubMed
El-Sayed, I.H., Huang, X., and El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 5, 829 (2005).CrossRefGoogle ScholarPubMed
Smithpeter, C., Dunn, A., Welch, A.J., and Richards-Kortum, R.: Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37, 2749 (1998).CrossRefGoogle ScholarPubMed
Tearney, G.J., Brezinski, M.E., Bouma, B.E., Boppart, S.A., Pitris, C., Southern, J.F., and Fujimoto, J.G.: In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037 (1997).CrossRefGoogle ScholarPubMed
Huang, D., Swanson, E., Lin, C., Schuman, J., Stinson, W., Chang, W., Hee, M., Flotte, T., Gregory, K., and Puliafito, C.A.: Optical coherence tomography. Science 254, 1178 (1991).CrossRefGoogle ScholarPubMed
Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., and Richards-Kortum, R.: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999 (2003).Google ScholarPubMed
Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A.: Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2, 681 (2007).CrossRefGoogle ScholarPubMed
Craig, G.A., Allen, P.J., and Mason, M.D.: Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging. In Cancer Nanotechnology: Methods and Protocols, edited by Grobmyer, S.R. and Moudgil, B.M. (Humana Press, 2010).Google Scholar
Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., and Baxter, S.C.: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).CrossRefGoogle ScholarPubMed
Daniel, M-C. and Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2003).CrossRefGoogle Scholar
Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., and Whyman, R.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 801 (1994).CrossRefGoogle Scholar
Tolles, W.M.: Nanoscience and nanotechnology in Europe. Nanotechnology 7, 59 (1996).CrossRefGoogle Scholar
Selvakannan, P.R., Mandal, S., Pasricha, R., Adyanthaya, S.D., and Sastry, M.: One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface. Chem. Commun. 1334 (2002).CrossRefGoogle Scholar
Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H., and Yobiko, Y.: Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles. Langmuir 17, 7717 (2001).CrossRefGoogle Scholar
Fleming, D.A. and Williams, M.E.: Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir 20, 3021 (2004).CrossRefGoogle ScholarPubMed
Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20 (1973).CrossRefGoogle Scholar
Wu, H., Bai, F., Sun, Z., Haddad, R.E., Boye, D.M., Wang, Z., Huang, J.Y., and Fan, H.: Nanostructured gold architectures formed through high pressure-driven sintering of spherical nanoparticle arrays. J. Am. Chem. Soc. 132, 12826 (2010).CrossRefGoogle ScholarPubMed
Zhu, J., Lines, B.M., Ganton, M.D., Kerr, M.A., and Workentin, M.S.: Efficient synthesis of isoxazolidine-tethered monolayer-protected gold nanoparticles (MPGNs) via 1,3-dipolar cycloadditions under high-pressure conditions. J. Org. Chem. 73, 1099 (2008).CrossRefGoogle Scholar
Shukla, R., Nune, S.K., Chanda, N., Katti, K., Mekapothula, S., Kulkarni, R.R., Welshons, W.V., Kannan, R., and Katti, K.V.: Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 4, 1425 (2008).CrossRefGoogle ScholarPubMed
Han, G., Ghosh, P., and Rotello, V.M.: Functionalized gold nanoparticles for drug delivery. Nanomedicine 2, 113 (2007).CrossRefGoogle ScholarPubMed
He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., and Gu, N.: Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 61, 3984 (2007).CrossRefGoogle Scholar
He, S., Zhang, Y., Guo, Z., and Gu, N.: Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol. Progr. 24, 476 (2008).CrossRefGoogle ScholarPubMed
Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M.: Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496 (2004).CrossRefGoogle Scholar
Southam, G. and Beveridge, T.J.: The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta 58, 4527 (1994).CrossRefGoogle Scholar
Southam, G. and Beveridge, T.J.: The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim. Cosmochim. Acta 60, 4369 (1996).CrossRefGoogle Scholar
Beveridge, T.J. and Murray, R.G.: Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141, 876 (1980).CrossRefGoogle ScholarPubMed
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., and Kumar, R.: Bioreduction of AuCl-4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40 (2001).3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., and Sastry, M.: Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3, 461 (2002).3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Wen, L., Lin, Z., Gu, P., Zhou, J., Yao, B., Chen, G., and Fu, J.: Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J. Nanopart. Res. 11, 279 (2009).CrossRefGoogle Scholar
Ahmad, A., Senapati, S., Islam Khan, M., Kumar, R., Ramani, R., Srinivas, V., and Sastry, M.: Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14, 824 (2003).CrossRefGoogle Scholar
Kasthuri, J., Kathiravan, K., and Rajendiran, N.: Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: A novel biological approach. J. Nanopart. Res. 11, 1075 (2009).CrossRefGoogle Scholar
Mandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, B., and Mukherjee, P.. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485, 2006.CrossRefGoogle ScholarPubMed
Grzelczak, M., Perez-Juste, J., Mulvaney, P., and Liz-Marzan, L.M.: Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).CrossRefGoogle ScholarPubMed
Shankar, S.S., Ahmad, A., Pasricha, R., and Sastry, M.: Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822 (2003).CrossRefGoogle Scholar
Suresh, A.K., Pelletier, D.A., Wang, W., Broich, M.L., Moon, J-W., Gu, B., Allison, D.P., Joy, D.C., Phelps, T.J., and Doktycz, M.J.: Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 7, 2148 (2011).CrossRefGoogle ScholarPubMed
Bruins, M.R., Kapil, S., and Oehme, F.W.: Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198 (2000).CrossRefGoogle ScholarPubMed
Thakkar, K.N., Mhatre, S.S., and Parikh, R.Y.: Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257 (2009).CrossRefGoogle ScholarPubMed
Badwaik, V.D., Bartonojo, J.J., Evans, J.W., Sahi, S.V., Willis, C.B., and Dakshinamurthy, R.: Single-step biofriendly synthesis of surface modifiable, near-spherical gold nanoparticles for applications in biological detection and catalysis. Langmuir 27, 5549 (2011).CrossRefGoogle ScholarPubMed
Geoghegan, W.D. and Ackerman, G.A.: Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application. J. Histochem. Cytochem. 25, 1187 (1977).CrossRefGoogle Scholar
Jiang, W., KimBetty, Y.S., Rutka, J.T., and ChanWarren, C.W.: Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145 (2008).CrossRefGoogle ScholarPubMed
Yamashita, S., Katsumata, O., and Okada, Y.: Establishment of a standardized post-embedding method for immunoelectron microscopy by applying heat-induced antigen retrieval. J. Electron. Microsc. (Tokyo) 58, 267 (2009).CrossRefGoogle ScholarPubMed
Luo, Y., Huang, B., Wu, H., and Zare, R.N.. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives. Anal. Chem. 13, 4588 (2006).CrossRefGoogle Scholar
Hutter, J.L. and Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868 (1993).CrossRefGoogle Scholar
Matei, G.A., Thoreson, E.J., Pratt, J.R., Newell, D.B., and Burnham, N.A.: Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev. Sci. Instrum. 77, 083703 (2006).CrossRefGoogle Scholar
Bhushan, B.: Handbook of Micro/Nanotribology (CRC Press, Boca Raton, FL, 1995).Google Scholar
Shahin, V., Ludwig, Y., Schafer, C., Nikova, D., and Oberleithner, H.: Glucocorticoids remodel nuclear envelope structure and permeability. J. Cell. Sci. 118, 2881 (2005).CrossRefGoogle ScholarPubMed
Kumar, P.S., Pastoriza-Santos, I., Rodríguez-González, B., Javier García de Abajo, F., and Liz-Marzánand, L.M.: High-yield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2008).CrossRefGoogle Scholar
Kumar, S.A., Peter, Y., and Nadeau, J.L.: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19, 495101 (2008).CrossRefGoogle ScholarPubMed
Njoki, P.N., Lim, I.I.S., Mott, D., Park, H-Y., Khan, B., Mishra, S., Sujakumar, R., Luo, J., and Zhong, C-J.: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 111, 14664 (2007).CrossRefGoogle Scholar
Landers, J.P.: Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 3rd ed. (CRC Press, Boca Raton, FL, 2008).Google Scholar
Shang, L., Wang, Y., Jiang, J., and Dong, S.: pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 23, 2714 (2007).CrossRefGoogle ScholarPubMed
Gates, A.T., Fakayode, S.O., Lowry, M., Ganea, G.M., Murugeshu, A., Robinson, J.W., Strongin, R.M., and Warner, I.M.: Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification. Langmuir 24, 4107 (2008).CrossRefGoogle ScholarPubMed
Wang, X., Yang, L., Chen, Z., and Shin, D.M.: Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 58, 97 (2008).CrossRefGoogle ScholarPubMed
Meng, J., Paetzell, E., Bogorad, A., and Soboyejo, W.O.: Adhesion between peptides/antibodies and breast cancer cells. J. Appl. Phys. 107, 114301 (2010).CrossRefGoogle Scholar
Oni, Y.: An implantable biomedical device and nanoparticles for cancer drug release and hyperthermia. Ph.D. Thesis in Mechanical and Aerospace Engineering, Princeton University, 2010.Google Scholar
Nanopartz: Bare spherical gold: Nanopartz accurate spherical gold nanoparticles, 2010. http://www.nanopartz.com/bare_spherical_gold_nanoparticles.htm.Google Scholar
Bharde, A., Kulkarni, A., Rao, M., Prabhune, A., and Sastry, M.: Bacterial enzyme mediated biosynthesis of gold nanoparticles. J. Nanosci. Nanotechnol. 7, 4369 (2007).CrossRefGoogle ScholarPubMed
Bhattacharya, D. and Gupta, R.K.: Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25, 199 (2005).CrossRefGoogle ScholarPubMed