Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:19:22.988Z Has data issue: false hasContentIssue false

Biomineralization in human pancreas: A combined infrared-spectroscopy, scanning electron microscopy, x-ray Rietveld analysis, and thermogravimetric study

Published online by Cambridge University Press:  21 December 2015

Samiran Pramanik
Affiliation:
Department of Physics, Jadavpur University, Kolkata, West Bengal 700032, India
Soumen Ghosh
Affiliation:
Department of Physics, Gour Mahavidyalaya, Malda, West Bengal 732142, India
Arkaprovo Roy
Affiliation:
Department of Surgery, Malda Medical College and Hospital, Malda, West Bengal 732101, India
Alok Kumar Mukherjee*
Affiliation:
Department of Physics, Jadavpur University, Kolkata, West Bengal 700032, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Structural characterization, quantitative phase analysis, and morphological behavior of biomineralized deposits in human pancreas [pancreatic stones (PSs)] have been carried out using infrared (IR)-spectroscopy, scanning electron microscopy (SEM), powder x-ray diffraction, and thermogravimetry - differential scanning calorimetry (TG–DSC). The fourier transform infrared (FT-IR) spectra indicated that the primary composition of PSs was calcium carbonate. An x-ray powder diffraction phase quantification using the Rietveld method revealed that five of the pancreatic calculi were composed exclusively of calcite (CAL) and the remaining four contained small amounts of vaterite and aragonite in addition to the CAL phase. The crystallite size of CAL in the PSs study varied between 104(6) and 181(2) nm. The SEM images of pancreatic calculi showed a variety of crystal morphologies for biogenic CAL crystallites such as, thin plates, spherulites, prisms, and cylindrical laths. Thermogravimetric analysis of PS1 reveals that biogenic CAL is stable up to 910 K, above which temperature CAL transforms into calcium oxide.

Type
Biomineralization and Biomimetics Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Colin Freeman

References

REFERENCES

Mann, S.: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, UK, 2001).Google Scholar
Meldrum, F.C.: Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 48, 187 (2003).Google Scholar
Skinner, H.C.W. and Ehrlich, H.: Biomineralization. In Treatise on Geochemistry. Biochemistry, 2nd ed., Turekin, K.K. and Holland, H.D. eds.; Elsevier Science: Amsterdam, 2014; pp. 105162.CrossRefGoogle Scholar
Bazin, D., Daudon, M., Combes, C., and Rey, C.: Characterization and some physicochemical aspects of pathological microcalcifications. Chem. Rev. 112, 5092 (2012).Google Scholar
Stinton, L.M. and Shaffer, E.A.: Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver 6, 172 (2012).CrossRefGoogle ScholarPubMed
Pak, C.Y.C.: Medical stone management: 35 years of advances. J. Urol. 180, 813 (2008).Google Scholar
Ehrlich, H.: Biological Materials of Marine Origin. Vertebrates. (Monograph) (Springer Verlag: Dordrecht, 2015); p. 594.Google Scholar
Taylor, E.N. and Curhan, G.C.: Diet and fluid prescription in stone disease. Kidney Int. 70, 835 (2006).Google Scholar
Guinerbretiere, J.M., Menet, E., Tardivon, A., Cherel, P., and Vanel, D.: Normal and pathological breast, the histology basis. Eur. J. Radiol. 54, 6 (2005).Google Scholar
Gracia-Gracia, S., Millan-Rodriguez, F., Rousaud-Baron, F., Montanes-Bermudez, R., Angerri-Feu, O., Sanchez-Martin, F., Villavicencio-Mavrich, H., and Oliver-Samper, A.: Why and how we must analyze urinary calculi. Actas. Urol. Esp. 35, 354 (2011).Google Scholar
Mukherjee, A.K.: Human kidney stone analysis using X-ray powder diffraction. J. Indian Inst. Sci. 94, 35 (2014).Google Scholar
Ghosh, S., Basu, S., Chakraborty, S., and Mukherjee, A.K.: Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. J. Appl. Crystallogr. 42, 629 (2009).Google Scholar
Ghosh, S., Bhattacharya, A., Chatterjee, P., and Mukherjee, A.K.: Structural and microstructural characterization of seven human kidney stones using FTIR spectroscopy, SEM, thermal study and X-ray Rietveld analysis. Z. Kristallogr. 229, 451 (2014).Google Scholar
Sperrin, M.W. and Rogers, K.: The architecture and composition of uroliths. Br. J. Urol. 82, 781 (1998).Google Scholar
Daudon, M., Bazin, D., André, G., Jungers, P., Cousson, A., Chevallier, P., Véron, E., and Matzen, G.: Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J. Appl. Crystallogr. 42, 109 (2009).Google Scholar
Qiao, T., Ma, R.H., Luo, X.B., Luo, Z.L., Zheng, P.M., and Yang, L.Q.: A microstructural study of gallbladder stones using scanning electron microscopy. Microsc. Res. Tech. 76, 443 (2013).Google Scholar
Yu, J.K., Pan, H., Huang, S.M., Huang, N.L., Yao, C.C., Hsiao, K.M., and Wu, C.W.: Calcium-content of different compositions gallstones and pathogenesis of calcium carbonate gallstones. Asian J. Surg. 36, 26 (2013).Google Scholar
Narasimhulu, K.V., Gopal, N.O., Rao, J.L., Vijayalakshmi, N., Natarajan, S., Surendran, R., and Mohan, V.: Structural studies of the biomineralized species of calcified pancreatic stones in patients suffering from chronic pancreatitis. Biophys. Chem. 114, 137 (2005).CrossRefGoogle ScholarPubMed
Schultz, A.C., Moore, P.B., Geevarghese, P.J., and Pitchumoni, C.S.: X-ray diffraction studies of pancreatic calculi associated with nutritional pancreatitis. Dig. Dis. Sci. 31, 476 (1986).Google Scholar
Bimmler, D., Graf, R., Scheele, G.A., and Frick, T.W.: Pancreatic stone protein (lithostathine), a physiologically relevant pancreatic calcium carbonate crystal inhibitor? J. Biol. Chem. 272, 3073 (1997).CrossRefGoogle ScholarPubMed
Beger, H.G., Warshaw, A.L., Carr-Locke, D.L., Neoptolemos, J.P., Russell, C., and Sarr, M.G.: The Pancreas (Blackwell Scientific Publications, London, 1998).Google Scholar
Rodgers, A.L. and Spector, M.: Pancreatic calculi containing brushite: Ultrastructure and pathogenesis. Calcif. Tissue Int. 39, 342 (1986).Google Scholar
Hesse, A., Kruse, R., Geilenkeuser, W.J., and Schmidt, M.: Quality control in urinary stone analysis: Results of 44 ring trials (1980–2001). Clin. Chem. Lab. Med. 43, 298 (2005).Google Scholar
Estepa, L. and Daudon, M.: Contribution of fourier transform infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy 3, 347 (1997).Google Scholar
Malet, P.F., Dabezies, M.A., Huang, G.H., Long, W.B., Gadacz, T.R., and Soloway, R.D.: Quantitative infrared spectroscopy of common bile duct gallstones. Gastroenterology 94, 1217 (1988).Google Scholar
Rietveld, H.M.: Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967).Google Scholar
Rietveld, H.M.: A profile refinement method for nuclear and magnetic structure. J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
Young, R.A.: The Rietveld Method (IUCr/Oxford University Press, Oxford, 1996).Google Scholar
Orlando, M.T.D., Kuplich, L., de Souza, D.O., Belich, H., Depianti, J.B., Orlando, C.G.P., Medeiros, F.F., da Cruz, P.C.M., Martinez, L.G., Corrêa, H.P.S., and Ortiz, R.: Study of calcium oxalate monohydrate of kidney stones by X-ray diffraction. Powder Diffr. 23, 59 (2008).Google Scholar
Lutterotti, L.: MAUD. Version 2.33. 2010 http://www.ing.unitn.it/∼maud.Google Scholar
Maslen, E.N., Streltsov, V.A., and Streltsova, N.R.: X-ray study of the electron density in calcite, CaCO3 . Acta Crystallogr., Sect. B 49, 636 (1993).Google Scholar
Caspi, E.N., Pokroy, B., Lee, P.L., Quintana, J.P., and Zolotoyabko, E.: On the structure of aragonite. Acta Crystallogr., Sect. B 61, 129 (2005).Google Scholar
Bail, A.L., Ouhenia, S., and Chateigner, D.: Microtwinning hypothesis for a more ordered vaterite model. Powder Diffr. 26, 16 (2011).Google Scholar
Sitepu, H.: Assessment of preferred orientation with neutron powder diffraction data. J. Appl. Cryst. 35, 274 (2002).CrossRefGoogle Scholar
Lutterotti, L., Scardi, P., and Maistrelli, P.: LSI—A computer program for simultaneous refinement of material structure and microstructure. J. Appl. Crystallogr. 25, 459 (1992).CrossRefGoogle Scholar
Adler, H.H. and Kerr, P.F.: Infrared study of aragonite and calcite. Am. Mineral. 47, 700 (1962).Google Scholar
Al-Hosney, H.A. and Grassian, V.H.: Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study. Phys. Chem. Chem. Phys. 7, 1266 (2005).Google Scholar
Montalto, G., Multigner, L., Sarles, H., and De Caro, A.: Organic matrix of pancreatic stones associated with nutritional pancreatitis. Pancreas 3, 263 (1988).Google Scholar
Jin, C.X., Naruse, S., Kitagawa, M., Ishiguro, H., Kondo, T., Hayakawa, S., and Hayakawa, T.: Pancreatic stone protein of pancreatic calculi in chronic calcified pancreatitis in man. J. Pancreas 3, 54 (2002).Google Scholar
Pokroy, B., Fitch, A.N., and Zolotoyabko, E.: The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363 (2006).Google Scholar
Zolotoyabko, E. and Pokroy, B.: Biomineralization of calcium carbonate: Structural aspects. CrystEngComm 9, 1156 (2007).Google Scholar
Zolotoyabko, E., Caspi, E.N., Fieramosca, J.S., Von Dreele, R.B., Marin, F., Mor, G., Addadi, L., Weiner, S., and Politi, Y.: Differences between bond lengths in biogenic and geological calcite. Cryst. Growth Des. 10, 1207 (2010).Google Scholar
Maslen, E.N., Streltsov, V.A., and Streltsova, N.R.: Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3 . Acta Crystallogr., Sect. B 51, 929 (1995).Google Scholar
Addadi, L. and Weiner, S.: Control and design principles in biological mineralization. Angew. Chem., Int. Ed. 31, 153 (1992).Google Scholar
Checa, A.G., Esteban-Delgado, F.J., Ramirez-Rico, J., and Rodriquez-Navarro, A.B.: Crystallographic reorganization of the calcitic prismatic layer of oysters. J. Struct. Biol. 167, 261 (2009).Google Scholar
Dauphin, Y.: Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves: Pinna nobilis and pinctada margaritifera. J. Biol. Chem. 278, 15168 (2003).CrossRefGoogle ScholarPubMed
Singh, N.B. and Singh, N.P.: Formation of CaO from thermal decomposition of calcium carbonate in the presence of carboxylic acids. J. Therm. Anal. Calorim. 89, 159 (2007).Google Scholar