Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T21:49:13.149Z Has data issue: false hasContentIssue false

Analysis of soft impingement in nonisothermal precipitation

Published online by Cambridge University Press:  31 January 2011

Feng Liu*
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
Yaohe Zhou
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of soft impingement on precipitation are considered. A physically realistic analytical treatment of soft impingement has been developed for solid-state precipitation in a nonisothermal heating/cooling process following the basic assumptions (i.e., a two-stage transformation including site saturation of nucleation, isotropic growth and linear approximation for a concentration gradient in front of the precipitate/matrix interface). Furthermore, both one- and three-dimensional precipitations have been described using a compact expression which is analogous to Zener’s model but with a temperature-dependent growth coefficient. A detailed description for the model parameters has been given for the model application. Good agreement with published experimental data, for example, the decomposition of austenite in a 0.038–0.30wt%Mn plain carbon steel, has been achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Deschamps, A., Bley, F., Lae, L., Dumont, M., and Perrard, F.: Characterisation and modelling of non-isothermal precipitation in metallic systems. Adv. Eng. Mater. 8, 1236 (2006).CrossRefGoogle Scholar
2.Christian, J.W.: The Theory of Transformations in Melts and Alloys (Pergamon Press, Oxford, UK, 2002), p. 486.Google Scholar
3.Starink, M.J. and Zahra, A.M.: Kinetics of isothermal and non-isothermal precipitation in an Al-6at.%Si alloy. Philos. Mag. 77. 187 (1998).CrossRefGoogle Scholar
4.Kempen, A.T.W., Sommer, F., and Mittemeijer, E.J.: Determination and interpretation of isothermal and non-isothermal transformation kinetics; The effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37, 1321 (2002).CrossRefGoogle Scholar
5.Khan, I.N., Starink, M.J., and Yan, J.L.: Determination of the precipitation kinetics of Ni3Al in the Ni–Al system using differential scanning calorimetry. Mater. Sci. Em., A 472, 66 (2008).Google Scholar
6.Liu, F., Sommer, F., and Mittemeijer, E.J.: Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; Application to calorimetric data. Acta Mater. 52, 3207 (2004).CrossRefGoogle Scholar
7.Vazquez, J. and Villares, P.: Generalization of the Avrami equation for the analysis of non-isothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J. Phys. Chem. Solids 61, 493 (2000).CrossRefGoogle Scholar
8.Ruitenberg, G., Woldt, E., and Petford-Long, A.K.: Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim. Acta 378, 97 (2001).CrossRefGoogle Scholar
9.Liu, F., Sommer, F., and Mittemeijer, E.J.: Parameter determination of an analytical model for phase transformation kinetics: Application to crystallization of amorphous Mg-Ni alloys. J. Mater. Res. 19(9), 2586 (2004).CrossRefGoogle Scholar
10.Cahn, J.W.: Transformation kinetics during continuous cooling. Acta Mater. 4, 572 (1956).CrossRefGoogle Scholar
11.Sieurin, H. and Sandström, R.: Sigma phase precipitation in duplex stainless steel 2205. Mater. Sci. Eng., A 444, 271 (2007).CrossRefGoogle Scholar
12.Wen, Y.H., Simmons, J.P., Shen, C., Woodward, C., and Wang, Y.: Phase-field modeling of bimodal particle size distributions during continuous cooling. Acta Mater. 51, 1123 (2003).CrossRefGoogle Scholar
13.Wagner, R. and Kampmann, R.: Materials Science and Technology: A Comprehensive Treatment (VCH, New York, 1991).Google Scholar
14.Liu, F., Sommer, F., Bos, C., and Mittemeijer, E.J.: Analysis of solid-state phase transformation kinetics; Models and recipes. Int. Mater. Rev. 52, 193 (2007).CrossRefGoogle Scholar
15.Liu, F., Sommer, F., and Mittemeijer, E.J.: An analytical model for isothermal and isochronal phase transformation kinetics. J. Mater. Sci. 39, 1621 (2004).CrossRefGoogle Scholar
16.Avrami, M.: Kinetics of phase change. I: General theory. J. Chem. Phys. 7, 1103 (1939).Google Scholar
17.Avrami, M.: Kinetics of phase change. II: Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
18.Avrami, M.: Kinetics of phase change. III: Cranulation, phase change, and microstructure. J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
19.Yu, G., Lai, Y.K.L., and Zhang, W.: Kinetics of transformation with nucleation and growth mechanism: Diffusion-controlled reactions. J. Appl. Phys. 82, 4270 (1997).CrossRefGoogle Scholar
20.Crank, J.: The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, UK, 1975).Google Scholar
21.Zener, C.: Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 20, 950 (1949).CrossRefGoogle Scholar
22.Brandes, E.A. and Brook, G.B.: Smithells Metals Reference Book (Butterworths, London, 1992).Google Scholar
23.Shewmon, P.: Diffusion in Solids, 2nd ed. (The Minerals, Metals & Materials Society, Warrendale, PA, 1989).Google Scholar
24.Howard, B.A., Fainstein, D., and Gerald, R.: Diffusion-limited phase transformation: A comparison and critical evaluation of the mathematical approximations. J. Appl. Phys. 41, 4404 (1970).Google Scholar
25.Fan, K., Liu, F., Yang, G.C., and Zhou, Y.H.: Modeling of isothermal solid-state precipitation using an analytical treatment of soft impingement. Acta Mater. 56, 4309 (2008).CrossRefGoogle Scholar
26.Militzer, M., Pandi, R., and Hawbolt, E.B.: Ferrite nucleation and growth during continuous cooling. Metall. Mater. Trans. A 27, 1547 (1996).CrossRefGoogle Scholar
27.García de Andreś, C., Capdevila Caballero, C.F.G., and Bhadeshia, H.K.D.H.: Modeling of isothermal ferrite formation using an analytical treatment of soft impingement in 0.37C-0.45Mn-0.11V microalloyed steel. Scr. Mater. 39, 853 (1998).CrossRefGoogle Scholar
28.Krielaart, G.P. and Van der Zwaag, S.: Kinetics of γ→α phase transformations in Fe-Mn alloys containing low manganese. Mater. Sci. Technol. 14, 10 (1998).CrossRefGoogle Scholar
29.Vandermeer, R.A.: Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-C alloys. Acta Mater. 38, 2461 (1990).CrossRefGoogle Scholar
30.Kempen, A.T.W., Sommer, F., and Mittemeijer, E.J.: The kinetics of the austenite-ferrite phase transformation of Fe-Mn: Differential thermal analysis during cooling. Acta Mater. 50, 3207 (2002).CrossRefGoogle Scholar
31.Mittemeijer, E.J.: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27, 3977 (1992).CrossRefGoogle Scholar
32.Abramowitz, M. and Stegun, I.A.: Handbook of Mathematical Functions (Dover Publication Inc., New York, 1965).Google Scholar