Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T18:06:38.015Z Has data issue: false hasContentIssue false

Effect of gentamicin on the carbohydrates of the vestibular end organs: An investigation by the use of FITC-lectins

Published online by Cambridge University Press:  29 June 2007

M. Takumida*
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
R. Urquiza
Affiliation:
Department of Otolaryngology, University Hospital, Malaga, Spain.
D. Bagger-Sjöbäck
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
J. Wersäll
Affiliation:
Department of Otolaryngology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
*
M. Takumida, Department of Otolaryngology, Hiroshima University School of Medicine, 1-2-3 Kasumicho, Minamiku, Hiroshima 734, Japan

Abstract

The effect of gentamicin on the glycoconjugates in the vestibular end organs is demonstrated using FITC-lectins. Five milligrams of gentamicin dissolved in 0.1 ml. saline was injected in a single dose into the middle ear of adult guinea pigs. Seven days after the injection, the fluorescent reactivity of Wheat germ agglutinin (WGA), Abrus precatorius agglutinin (APA), Concanavaline A (Con A), and Latyrus odoratus agglutinin (LOA) was decreased in the apical epithelial cell surface as well as in the gelatinous layer of the otolithic membrane of the maculae. In the cupula of the crista ampullaris, the reactivity for WGA and Con A was reduced. The otoconia, however, showed no detectable changes. This indicates that gentamicin may induce an altered carbohydrate metabolism resulting in a decrease of N-acetyl-glucosamine, mannose, galactose and glucose in the glycocalyx lining the epithelial cells as well as in the gelatinous layer of the otolithic membrane or cupula in the vestibular end organs.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagger-Sjöbäck, D. and Wersäll, J. (1978) Gentamicin induced mitochondrial damage in the inner ear sensory cells of the lizard Calotes vesicolor. Acta Otolaryngologica, 86: 3551.CrossRefGoogle Scholar
De Robertis, E. D. P. and De Robertis, E. M. F. (1980) eds. Cell and molecular biology, Saunders College, Philadelphia. pp.206248.Google Scholar
Gil-Loyzaga, P., Raymond, J. and Gabrion, J. (1985a) Carbohydrates detected by lectins in the vestibular organ, Hearing Research, 18: 269272.CrossRefGoogle ScholarPubMed
Gil-Loyzaga, P., Gabrion, J. and Uziel, A. (1985b) Lectins demonstrate the presence of carbohydrates in the tectorial membrane of mammalian cochlea. Hearing Research, 20: 18.CrossRefGoogle Scholar
Harada, Y. and Sugimoto, Y. (1977) Metabolic disorder of otoconia after streptomycin intoxication, Acta Otolaryngologica, 84: 6571.CrossRefGoogle ScholarPubMed
Igarashi, M. and Kanda, T. (1969) Fine structure of the otolithic membrane in the squirrel monkey, Acta Otolaryngologica, 68: 4353.CrossRefGoogle ScholarPubMed
Johnsson, L. G., Wright, C. G., Preston, R. E. and Henry, P. J. (1980) Streptomycin-induced defects of the otoconial membrane, Acta Otolaryngologica, 89: 401406.CrossRefGoogle ScholarPubMed
Lim, D. J. (1973) Formation and fate of the otoconia, Annals of Otology, Rhinology and Laryngology, 82: 2335.CrossRefGoogle ScholarPubMed
Lim, D. J. (1984) The development and structure of the otoconia. In Ultrastructural atlas of the inner ear. (Friedmann, I. and Ballantyne, J. eds.) pp.245269, Buttenvorth & Co., London.Google Scholar
Serra, A. and La Mantia, I. (1983) Normal and altered otoliths of guinea pig. Scanning electron microscopy observations, Archives of Otorhinolaryngology, 237: 209214.Google Scholar
Tachibana, M., Morioka, H., Machino, M., Tanimura, F. and Mizukoshi, O. (1987) Cupulogenesis and glycoconjugates in the labyrinthine ampulla as revealed by WGA-gold labelling, Archives of Otorhinolaryngology, 244: 112116.CrossRefGoogle Scholar
Takumida, M., Wersäll, J. and Bagger-Sjöbäck, D. (1988) Stereociliarly glycocalyx and interconnections in the guinea pig vestibular organs Acta Otolaryngologica, 106: 130139.CrossRefGoogle ScholarPubMed
Takumida, M., Urquiza, R., Bagger-Sjöbäck, D. and Wersäll, J. (1989a) Carbohydrate of the vestibular end organs detected by lectins, Journal for Oto-Rhino-Laryngology and its related specialties: in press.CrossRefGoogle ScholarPubMed
Takumida, M., Wersäll, J. and Bagger-Sjöbäck, D. (1989b) Sensory hair fusion and glycocalyx changes after gentamicin exposure in the guinea pig, Acta Otolaryngologica, 107: 3947.CrossRefGoogle ScholarPubMed
Wersäll, J., Björkroth, B., Flock, Å. and Lundquist, P. G. (1971) Sensory hair fusion in vestibular sensory cells after gentamycin exposure, Archiv für klinische und experimentelle Ohren- Nasen-und Kehlkopfheilkunde, 200: 114.CrossRefGoogle ScholarPubMed