Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T13:03:33.230Z Has data issue: false hasContentIssue false

Responses of monogenean species to variations in abiotic parameters in tilapiculture

Published online by Cambridge University Press:  10 September 2020

L.D. Cavalcanti*
Affiliation:
Programa de pós-graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Grande Dourados – UFGD, CP 364, 79804-970, Dourados, MS, Brazil
E.J. Gouveia
Affiliation:
Programa de pós-graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Grande Dourados – UFGD, CP 364, 79804-970, Dourados, MS, Brazil
F.C. Leal
Affiliation:
Programa de pós-graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Grande Dourados – UFGD, CP 364, 79804-970, Dourados, MS, Brazil
C.S.M. Figueiró
Affiliation:
Programa de pós-graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Grande Dourados – UFGD, CP 364, 79804-970, Dourados, MS, Brazil
S.S. Rojas
Affiliation:
Programa de pós-graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Grande Dourados – UFGD, CP 364, 79804-970, Dourados, MS, Brazil
M.R. Russo
Affiliation:
Programa de pós-graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Grande Dourados – UFGD, CP 364, 79804-970, Dourados, MS, Brazil
*
Author for correspondence: L.D. Cavalcanti, E-mail: [email protected]

Abstract

Fish farming is becoming an increasingly popular agricultural activity, and water quality in these environments is a major concern. Fish parasites, such as monogeneans, respond to changes in abiotic conditions, either with an increase or decrease in population. This study aimed to identify gill monogeneans and analyse their relationships with abiotic factors during the ontogenetic development of Nile tilapia over the fish culture cycle in Mato Grosso do Sul, Brazil. Fish were sampled monthly for eight months, and a total of 200 fish were collected. The physical and chemical water parameters were measured and correlated with the abundance of each monogenean species. Over the fish culture cycle, the physical and chemical parameters fluctuated, and the water quality decreased. The parasites found included Cichlidogyrus tilapiae, Cichlidogyrus thurstonae, Cichlidogyrus sclerosus, Cichlidogyrus halli and Scutogyrus longicornis. The abundances of all species showed significant differences during ontogenetic development (body size) and C. tilapiae, C. sclerosus, C. thurstonae and S. longicornis were correlated with changes in abiotic conditions. However, C. halli was not significantly correlated with any of the evaluated physical or chemical parameters. Understanding how different monogenean species respond to changes in the physical and chemical parameters of water during a production cycle can prevent peaks in abundance and subsequent sanitary problems.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agra, JUM, Klink, JME and Rodrigues, GG (2012) Monitoramento da piscicultura em reservatórios: uma abordagem ecológica. Revista Brasileira de Geografia Física 6, 14571472.Google Scholar
Aguirre-Fey, D, Benítez-Villa, GE, León, GPP and Rubio-Godoy, M (2015) Population dynamics of Cichlidogyrus spp. and Scutogyrus sp. (Monogenea) infecting farmed tilapia in Veracruz, México. Aquaculture 443, 1115.CrossRefGoogle Scholar
Akoll, P, Fioravanti, ML, Konecny, R and Schiemer, F (2012) Infection dynamics of Cichlidogyrus tilapiae and C. sclerosus (Monogenea, Ancyrocephalinae) in Nile tilapia (Oreochromis niloticus L.) from Uganda. Journal of Helminthology 86, 302310.CrossRefGoogle Scholar
Audry, S, Schäfer, J, Blanc, G and Jouanneau, JM (2004) Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution 132, 413426.CrossRefGoogle Scholar
Awharitoma, AO and Ehigiator, FA (2019) Effects of climatic changes on fish diversity and abundance and prevalence of fish parasitic infections in southern Nigeria. NISEB Journal 17, 112118.Google Scholar
Baccarin, AE and Camargo, AFM (2005) Characterization and evaluation of the feed management on the effluents of Nile tilapia (Oreochromis niloticus) culture. Brazilian Archives of Biology and Technology 48, 8190.CrossRefGoogle Scholar
Baldisserotto, B (2013) Fisiologia de peixes aplicada à piscicultura. 349 pp. 3rd edn. Santa Maria, Editora da Universidade Federal de Santa Maria.Google Scholar
Barker, DE and Cone, DK (2000) Occurrence of Ergasilus celestis (Copepoda) and Pseudodactylogryrus anguillae (Monogenea) among wild eels (Anguilla rostrata) in relation to stream flow, pH and temperature and recommendations for controlling their transmission among captive eels. Aquaculture 187, 261274.CrossRefGoogle Scholar
Bezerra, MF, Lacerda, LD and Lai, CT (2019) Trace metals and persistent organic pollutants contamination in batoids (Chondrichthyes: Batoidea): a systematic review. Environmental Pollution 248, 684695.CrossRefGoogle ScholarPubMed
Blahoua, GK, Yao, SS, Etilé, RND and N'Douba, V (2016) Distribution of gill monogenean parasites from Oreochromis niloticus (Linn, 1758) in man-made Lake Ayam I, Cte dIvoire. African Journal of Agricultural Research 11, 117129.Google Scholar
Blanar, CA, Munkittrick, KR, Houlahan, J, MacLatchy, DL and Marcogliese, DJ (2009) Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquatic Toxicology 93, 1828.CrossRefGoogle ScholarPubMed
Boeger, WA and Vianna, RT (2006) Monogenoidea. pp. 42116in Thatcher, VE (Ed) Aquatic biodiversity in Latin America. Amazon fish parasites. 2nd edn.Sofia-Moscow, Pensoft Publisher.Google Scholar
Bohnes, FA, Hauschild, MZ, Schlundt, J and Laurent, A (2019) Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture 11, 10611079.CrossRefGoogle Scholar
Borghetti, JR and Canzi, C (1993) The effect of water temperature and feeding rate on the growth rate of pacu (Piaractus mesopotamicus) raised in cages. Aquaculture 114, 93101.CrossRefGoogle Scholar
Bowden, TJ (2008) Modulation of the immune system of fish by their environment. Fish Shellfish Immunology 25, 373383.CrossRefGoogle ScholarPubMed
Brooks, BW and Conkle, JL (2019) Commentary: perspectives on aquaculture, urbanization and water quality. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 217, 14.Google ScholarPubMed
Buchmann, K and Lindenstrøm, T (2002) Interactions between monogenean parasites and their fish hosts. International Journal for Parasitology 32, 309319.CrossRefGoogle ScholarPubMed
Bush, AO, Lafferty, KD, Lotz, JM and Shostak, AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Chapman, JM, Marcogliese, DJ, Suski, CD and Cooke, SJ (2015) Variation in parasite communities and health indices of juvenile Lepomis gibbosus across a gradient of watershed land-use and habitat quality. Ecological Indicators 57, 564572.CrossRefGoogle Scholar
Chary, K, Aubin, J, Sadoul, B, Fiandrino, A, Covès, D and Callier, MD (2019) Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): assessing bioremediation and life-cycle impacts. Aquaculture 516, 117.Google Scholar
Choudhury, A and Dick, TA (1998) The historical biogeography of sturgeons (Osteichthyes: Acipenseridae): a synthesis of phylogenetics, palaeontology and palaeogeography. Journal of Biogeography 25, 623640.CrossRefGoogle Scholar
Chubb, JC (1979) Seasonal occurrences of helminths in freshwater fishes. Part II. Trematoda. Advances in Parasitology 17, 141313.CrossRefGoogle Scholar
Dallarés, S, Pérez-del-Olmo, A, Montero, FE and Carrassón, M (2017) Composition and seasonal dynamics of the parasite communities of Scyliorhinus canicula (L., 1758) and Galeus melastomus Rafinesque, 1810 (Elasmobranchii) from the NW Mediterranean Sea in relation to host biology and ecological features. Hydrobiologia 799, 275291.CrossRefGoogle Scholar
Dayoub, AI and Salman, HM (2015) Study of using Monogenea parasites on free living fishes in the Lake of 16 Tishreen Dam as bioindicators of environment pollution. International Journal of Biomedical Engineering and Clinical Science 1, 1522.Google Scholar
Dotta, G, Brum, A, Jeronimo, GT, Maraschin, M and Martins, ML (2015) Effect of dietary supplementation with propolis and Aloe barbadensis extracts on hematological parameters and parasitism in Nile tilapia. Revista Brasileira de Parasitologia Veterinária 24, 6671.CrossRefGoogle ScholarPubMed
Douëllou, L (1993) Monogeneans of the genus Cichlidogyrus Paperna, 1960 (Dactylogyridae: Ancyrocephalinae) from cichlid fishes of Lake Kariba (Zimbabwe) with descriptions of five new species. Systematic Parasitology 25, 159186.CrossRefGoogle Scholar
Eiras, JC, Takemoto, RM and Pavanelli, GC (2006) Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. 199 pp. 2nd edn. Maringá, Eduem.Google Scholar
El Amin, MS and Al-Harbi, AH (2016) Prevalence and seasonal variation of ectoparasites in cultured Nile tilapia Oreochromis niloticus in Saudi Arabia. Journal of Parasitic Diseases 40, 14871493.Google Scholar
Ergens, R (1981) Nine species of the genus Cichlidogyrus Paperna, 1960 (Monogenea: Ancyrocephalinae) from Egyptian fishes. Folia Parasitologica 28, 205214.Google Scholar
Ernst, DH, Ellingson, LJ, Olla, BL, Wicklund, RI, Watanabe, WO and Grover, JJ (1989) Production of Florida red tilapia in seawater pools: nursery rearing with chicken manure and growout with prepared feed. Aquaculture 80, 247260.CrossRefGoogle Scholar
Falkenberg, JM, Golzio, JES, Pessanha, A, Patrício, J, Vendel, AL and Lacerda, AC (2019) Gill parasites of fish and their relation to host and environmental factors in two estuaries in northeastern Brazil. Aquatic Ecology 53, 109118.CrossRefGoogle Scholar
Figueiró, CSM, Oliveira, DB, Russo, MR, Caires, ARL and Rojas, SS (2018) Fish farming water quality monitored by optical analysis: the potential application of UV-Vis absorption and fluorescence spectroscopy. Aquaculture 490, 9197.CrossRefGoogle Scholar
Flores-Crespo, J, Velarde, FI, Flores-Crespo, R and Vazquez-Pelaez, CG (1992) Variacion estacional de Dactylogyrus sp. en dos unidades productoras de tilapia del Estado de Morelos. Técnica Pecuaria en México 30, 109118.Google Scholar
Ibrahim, MM (2012) Variation in parasite infracommunies of Tilapia zillii in relation to some biotic and abiotic factors. International. Journal Zoology 8, 5970.Google Scholar
Jerônimo, GT, Speck, GM, Cechinel, MM, Gonçalves, ELT and Martins, ML (2011) Seasonal variation on the ectoparasitic communities of Nile tilapia cultured in three regions in southern Brazil. Brazilian Journal of Biology 71, 365373.CrossRefGoogle ScholarPubMed
Karvonen, A, Kristjánsson, BK, Skúlason, S, Lanki, M, Rellstab, C and Jokela, J (2013) Water temperature, not fish morph, determines parasite infections of sympatric Icelandic threespine sticklebacks (Gasterosteus aculeatus). Ecology and Evolution 3, 15071517.CrossRefGoogle Scholar
Lamková, K, Šimková, A, Palíková, M, Jurajda, P and Lojek, A (2007) Seasonal changes of immuno competence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitology Research 101, 775789.CrossRefGoogle Scholar
Leonardo, AFG, Tachibana, L, Corrêa, CF, Gonçalves, TG and Baccarin, AE (2009) Qualidade da água e desempenho produtivo de juvenis de Tilápia-do-nilo em viveiros, utilizando-se três sistemas de alimentação. Revista Acadêmica Ciências Agrárias Ambientais 7, 383393.CrossRefGoogle Scholar
Lerssutthichawal, T, Maneepitaksanti, W and Purivirojkul, W (2015) Gill monogeneans of potentially cultured tilapias and first record of Cichlidogyrus mbirizei Bukinga et al., 2012, in Thailand. Walailak Journal of Science and Technology 13, 543553.Google Scholar
Lusk, S, Lusková, V and Hanel, L (2010) Alien fish species in the Czech Republic and their impact on the native fish fauna. Folia Zoologica 59, 5773.CrossRefGoogle Scholar
Macedo, CF and Sipaúba-Tavares, LH (2010) Eutrofização e qualidade da água na piscicultura: consequências e recomendações. Boletim do Instituto de Pesca 36, 149163.Google Scholar
Madanire-Moyo, GN, Matla, MM, Olivier, PAS and Luus-Powell, WJ (2011) Population dynamics and spatial distribution of monogeneans on the gills of Oreochromis mossambicus (Peters, 1852) from two lakes of the Limpopo River System, South Africa. Journal of Helminthology 85, 146–15.CrossRefGoogle ScholarPubMed
Madi, RR and Ueta, MT (2009) O papel de Ancyrocephalinae (Monogenea: Dactylogyridae), parasito de Geophagus brasiliensis (Pisces: Cichlidae), como indicador ambiental. Revista Brasileira de Parasitologia Veterinária 18, 3841.CrossRefGoogle Scholar
Mahmoud, AE, Mona, SZ, Abdel, RYD, Hossam, HA, Osman, KAH and Attia, AAZ (2011) Seasonal variations and prevalence of some external parasites affecting freshwater fishes reared at upper Egypt. Life Science Journal 8, 397400.Google Scholar
Manchester, SJ and Bullock, JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. Journal of Applied Ecology 37, 845864.CrossRefGoogle Scholar
Martins, AP, Reissmann, CB, Favaretto, N, Boeger, MR and Oliveira, ED (2007) Capacidade da Typha dominguensis na fitorremediação de efluentes de tanques de piscicultura na Bacia do Iraí Paraná. Revista Brasileira de Engenharia Agrícola e Ambiental 11, 3243306.CrossRefGoogle Scholar
Maury-Brachet, R, Gentes, S, Dassié, EP, Feurtet-Mazel, A, Vigouroux, R, Laperche, V and Legeay, A (2018) Mercury contamination levels in the bioindicator piscivorous fish Hoplias aimara in French Guiana rivers: mapping for risk assessment. Environmental Science and Pollution Research 26, 113.Google Scholar
Mellergaard, S and Nielsen, E (1995) Impact of oxygen deficiency on the disease status of common dab Limanda limanda. Diseases of Aquatic Organisms 22, 101114.CrossRefGoogle Scholar
Mori, RH, Chedid, RA, Braccini, GL, Ribeiro, RP, Oliveira, CAL, Pretto-Giordano, LG and Vargas, L (2015) Prevalence of ectoparasites and bacteriological diagnosis in Nile tilapia bred in net-tanks in the Corvo's River, Paraná, Brazil. Semina: Ciências Agrárias 36, 11451154.Google Scholar
Muñoz, G, Grutter, AS and Cribb, TH (2006) Endoparasite communities of five fish species (Labridae: Cheilininae) from Lizard Island: how important is the ecology and phylogeny of the hosts? Parasitology 132, 363374.CrossRefGoogle ScholarPubMed
Neofitou, N, Papadimitriou, K, Domenikiotis, C, Tziantziou, L and Panagiotaki, P (2019) GIS in environmental monitoring and assessment of fish farming impacts on nutrients of Pagasitikos Gulf, Eastern Mediterranean. Aquaculture 501, 6275.CrossRefGoogle Scholar
Ojha, ML, Suman, AK, Saini, VP and Surnar, SR (2019) Effect of selected abiotic factors on fish growth in micro-water sheds of southern Rajasthan (Dungarpur). International Journal of Pure Applied Bioscience 7, 8391.CrossRefGoogle Scholar
Ojwala, RA, Otachi, EO and Kitaka, NK (2018) Effect of water quality on the parasite assemblages infecting Nile tilapia in selected fish farms in Nakuru County, Kenya. Parasitology Research 117, 34593471.CrossRefGoogle ScholarPubMed
Paredes-Trujillo, A, Velázquez-Abunader, I, Torres-Irineo, E, Romero, D and Vidal-Martínez, VM (2016) Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (Perciformes: Cichlidae) in Yucatán, México. Parasites & Vectors 9, 6676.CrossRefGoogle Scholar
Pariselle, A and Euzet, L (1995) Gill parasites of the genus Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae) from Tilapia guineensis (Bleeker, 1862), with descriptions of six new species. Systematic Parasitology 30, 187198.CrossRefGoogle Scholar
Pariselle, A, Bilong Bilong, CF and Euzet, L (2003) Four new species of Cichlidogyrus Paperna, 1960 (Monogenea, Ancyrocephalidae), all gill parasites from African mouthbreeder tilapias of the genera Sarotherodon and Oreochromis (Pisces, Cichlidae), with a redescription of C. thurstonae Ergens, 1981. Systematic Parasitology 56, 201210.CrossRefGoogle Scholar
Poulin, R (1995) Phylogeny, ecology and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.CrossRefGoogle Scholar
Poulin, R and Leung, TLF (2011) Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia 166, 731738.CrossRefGoogle ScholarPubMed
Quinatto, J, Zambelli, NLDN, Souza, DH, Rafaeli Neto, SL, Cardoso, JT and Skoronski, E (2018) Using the pollutant load concept to assess water quality in an urban river: the case of Carahá River (Lages, Brazil). Revista Ambiente & Água 14, 211.Google Scholar
Rafiee, G and Saad, CR (2005) Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp.) growth in a recirculating aquaculture system. Aquaculture 244, 109118.CrossRefGoogle Scholar
Reynolds, M, Hockley, FA, Wilson, CA and Cable, J (2019) Assessing the effects of water flow rate on parasite transmission amongst a social host. Hydrobiologia 830, 201212.CrossRefGoogle Scholar
Sanchez-Ramirez, C, Vidal-Martinez, VM, Aguirre-Macedo, ML, Rodriguez-Canul, RP, Gold-Bouchot, G and Sures, B (2007) Cichlidogyrus sclerosus (Monogenea: Ancyrocephalinae) and its host, the Nile tilapia (Oreochromis niloticus), as bioindicators of chemical pollution. Journal of Parasitology 93, 10971107.CrossRefGoogle Scholar
Shinde, SE, Pathan, TS, Raut, KS and Sonawane, DL (2011) Studies on the physico-chemical parameters and correlation coefficient of Harsool-savangi Dam, District Aurangabad. India Middle East Journal of Scientific Research 8, 544554.Google Scholar
Sipaúba-Tavares, LH (2013) Uso racional da água em aquicultura. 189 pp. São Paulo, Funep.Google Scholar
Sipaúba-Tavares, LH, Millan, RN, Capitano, ÉCO and Scardoelli-Truzzi, B (2019) Abiotic parameters and planktonic community of an earthen fish pond with continuous water flow. Acta Limnologica Brasiliensia 31, 19.CrossRefGoogle Scholar
Skinner, RH (1982) The interrelation of water quality, gill parasites, and gill pathology of some fishes from South Biscayne Bay, Florida. Fishery Bulletin 80, 269280.Google Scholar
Snieszko, SF (1974) The effects of environmental stress on outbreaks of infectious diseases of fishes. Journal of Fish Biology 6, 197208.CrossRefGoogle Scholar
Tombi, J, Akoumba, JF and Bilong Bilong, CF (2014) The monogenean community on the gills of Oreochromis niloticus from Melen fish station in Yaounde, Cameroon. International Journal of Modern Biological Research 2, 1623.Google Scholar
Tubbs, LA, Poortenaar, CW, Sewell, MA and Diggles, BK (2005) Effects of temperature on fecundity in vitro, egg hatching and reproductive development of Benedenia seriolae and Zeuxapta seriolae (Monogenea) parasitic on yellowtail kingfish Seriola lalandi. International Journal for Parasitology 35, 315327.CrossRefGoogle ScholarPubMed
Vidal-Martínez, VM and Wunderlich, AC (2017) Parasites as bioindicators of environmental degradation in Latin America: a meta-analysis. Journal of Helminthology 91, 165173.CrossRefGoogle ScholarPubMed
Violante-González, J, Mendoza-Franco, EF, Rojas-Herrera, A and Guerrero, SG (2010) Factors determining parasite community richness and species composition in black snook Centropomus nigrescens (Centropomidae) from coastal lagoons in Guerrero, Mexico. Parasitology Research 107, 5966.CrossRefGoogle ScholarPubMed
Yoo, KH, Masser, MP and Hawcroft, BA (1995) An in pond raceway system incorporating removal of fish wastes. Aquacultural Engineering 14, 175187.CrossRefGoogle Scholar
Zhang, S, Zhi, T, Xu, X, Zheng, Y, Bilong, CFB, Pariselle, A and Yang, T (2019) Monogenean fauna of alien tilapias. Parasite 26, 216.CrossRefGoogle ScholarPubMed