Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T00:33:30.399Z Has data issue: false hasContentIssue false

Evaluating host–parasite co-adaptation relationships involving Angiostrongylus costaricensis

Published online by Cambridge University Press:  19 December 2017

C.T. Garrido
Affiliation:
Laboratório de Biologia Parasitária da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av Ipiranga 6681, Prédio 12 C 90690-900 Porto Alegre RS, Brasil
A.L. Morassutti*
Affiliation:
Laboratório de Biologia Parasitária da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av Ipiranga 6681, Prédio 12 C 90690-900 Porto Alegre RS, Brasil
J.R.S. Barradas
Affiliation:
Laboratório de Biologia Parasitária da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av Ipiranga 6681, Prédio 12 C 90690-900 Porto Alegre RS, Brasil
C. Graeff-Teixeira
Affiliation:
Laboratório de Biologia Parasitária da Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av Ipiranga 6681, Prédio 12 C 90690-900 Porto Alegre RS, Brasil
*
Author for correspondence: A.L. Morassutti, Fax: 55 51 3320 3312, E-mail: [email protected]

Abstract

Angiostrongylus costaricensis is a parasite that infects rodents, including the wild cotton rat Sigmodon hispidus and pygmy rice rats Oligoryzomys spp., among others. However, urban Rattus norvegicus and Mus musculus have not been identified as important hosts of A. costaricensis. In this study, Swiss mice (SW), Wistar R. norvegicus (RN), wild Oligoryzomys nigripes (ON) and a local strain of M. musculus (RGS) were experimentally infected with A. costaricensis. Survival, elimination of L1 (total sum per group, A0), and the number of adult worms recovered divided by the dose of each L3 inoculum (yield ratio, YR) were examined for each group after a 40-day post-infection period. The survival rates, A0 and YR values were: 27%, 207,589 and 0.42 for the SW group; 81%, 8691 and 0.01 for the RN group; and 63.6%, 26,560 and 0.16 for the RGS group, respectively, in each case. The survival rate for the ON group was 100% and the A0 value was 847,050. A YR was not calculated for the ON group since the ON group was maintained up to 565 days post-infection (pi) to examine long-term mortality. At 500 days pi (16 months), 50% of the ON group had died, while one animal (10%) survived 595 days pi (20 months). Taken together, these data indicate that A. costaricensis has undergone a greater degree of adaptation to the wild rodent, O. nigripes, than to R. norvegicus or a local M. musculus strain. In addition, titre curve (A0) modelling of adaptation status proved to be useful in evaluating A. costaricensis–rodent interactions.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro-Alarcón, A, Veneziano, V, Galiero, G et al. (2015) First report of a naturally patent infection of Angiostrongylus costaricensis in a dog. Veterinary Parasitology 212, 431434.Google Scholar
Ashby, B and Boots, M (2015) Coevolution of parasite virulence and host mating strategies. Proceedings of the National Academy of Sciences, USA 112, 1329013295.Google Scholar
Bender, AL, Maurer, RL, Silva, MC, Ben, R, Terraciano, PB, Silva, ACA and Graeff-Teixeira, C (2003) Eggs and reproductive organs of female Angiostrongylus costaricensis are more intensely recognized by human sera from acute phase in abdominal angiostrongyliasis. Revista da Sociedade Brasileira de Medicina Tropical 36, 449454.Google Scholar
Brack, M and Schröpel, M (1995) Angiostrongylus costaricensis in a black-eared marmoset. Tropical and Geographical Medicine 47, 136138.Google Scholar
Canali, C, Goulart, AH and Graeff-Teixeira, C (1998) Study on the elimination of Angiostrongylus costaricensis first stage larvae in the experimental infection of Swiss mice. Memorias do Instituto Oswaldo Cruz 93, 269272.Google Scholar
Gandon, S, Buckling, A, Decaestecker, E and Day, T (2008) Host–parasite coevolution and patterns of adaptation across time and space. Journal of Evolutionary Biology 21, 18611866.Google Scholar
Garnick, E (1992) Parasite virulence and parasite–host coevolution: a reappraisal. Journal of Parasitology 78, 381386.Google Scholar
Geiger, SM, Graeff-Teixeira, C, Soboslay, PT and Schulz-Key, H (1999) Experimental Angiostrongylus costaricensis infection in mice: immunoglobulin isotype responses and parasite-specific antigen recognition after primary low-dose response. Parasitology Research 85, 200205.Google Scholar
Graeff-Teixeira, C (2007) Expansion of Achatina fulica in Brazil and potential increased risk for angiostrongyliasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 743744.Google Scholar
Graeff-Teixeira, C, Ávila-Pires, FD, Machado, RCC, Camillo-Coura, L and Lenzi, HL (1990) Identificação de roedores silvestres como hospedeiros do Angiostrongylus costaricensis no sul do Brasil. Revista do Instituto de Medicina Tropical de Sao Paulo 32, 147150.Google Scholar
Graeff-Teixeira, C, Camilo-Coura, L and Lenzi, HL (1991) Histopathological criteria for the diagnosis of abdominal angiostrongyliasis. Parasitology Research 77, 606611.Google Scholar
Ishii, AI and Sano, M (1989) Strain-dependent differences in susceptibility of mice to experimental Angiostrongylus costaricensis infection. Journal of Helminthology 63, 302306.Google Scholar
Juminer, B, Borel, G, Mauleon, H, Durett-Desset, MC, Raccurt, CP, Roudier, M, Nicolas, M and Perez, JM (1993) Natural murine infestation by Angiostrongylus costaricensis Morera and Cespedes, 1971 in Guadeloupe. Bulletin de la Société de Pathologie Exotique 86, 502505.Google Scholar
Lipsitch, M, Herre, EA and Nowak, MA (1995) Host population structure and the evolution of virulence: a ‘law of diminishing returns’. Evolution 49, 743748.Google Scholar
Monge, E, Arroyo, R and Solano, E (1978) A new definitive natural host of Angiostrongylus costaricensis. Journal of Parasitology 64, 34.Google Scholar
Morassutti, AL, Thiengo, SC, Fernandez, M, Sawanyawisuth, K and Graeff-Teixeira, C (2014) Eosinophilic meningitis caused by Angiostrongylus cantonensis: an emergent disease in Brazil. Memorias do Instituto Oswaldo Cruz 109, 399407.Google Scholar
Morera, P (1973) Life history and redescription of Angiostrongylus costaricensis Morera and Céspedes, 1971. American Journal of Tropical Medicine and Hygiene 22, 613621.Google Scholar
Nobre, V, Serufo, JC, Carvalho Odos, S, et al. (2004) Alteration in the endogenous intestinal flora of Swiss Webster mice by experimental Angiostrongylus costaricensis infection. Memorias do Instituto Oswaldo Cruz 99, 717720.Google Scholar
Ogle, DH (2016) FSA: Fisheries Stock Analysis. R package version 0.8.10. Available at http://derekogle.com/fishR/packages (accessed 21 November 2016).Google Scholar
Poulin, R (2011) Evolutionary ecology of parasites. Princeton, Princeton University Press.Google Scholar
Quirós, JL, Jiménez, E, Bonilla, R, Arce, I, Hernández, C and Jiménez, Y (2011) Abdominal angiostrongyliasis with involvement of liver histopathologically confirmed: a case report. Revista do Instituto de Medicina Tropical de Sao Paulo 53, 219222.Google Scholar
Rambo, PR, Agostini, AA and Graeff-Teixeira, C (1997) Abdominal angiostrongylosis in southern Brazil – prevalence and parasitic burden in mollusc intermediate hosts from eighteen endemic foci. Memorias do Instituto Oswaldo Cruz 92, 914.Google Scholar
R Core Team (2016) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.R-project.org/ (accessed 21 November 2016).Google Scholar
Robles, M del R, Kinsella, JM, Galliari, C and Navone, GT (2016) New host, geographic records, and histopathologic studies of Angiostrongylus spp. (Nematoda: Angiostrongylidae) in rodents from Argentina with updated summary of records from rodent hosts and host specificity assessment. Memorias do Instituto Oswaldo Cruz 111, 181191.Google Scholar
Santos, FT, Pinto, VM and Graeff-Teixeira, C (1996) Evidence against a significant role of Mus musculus as natural host for Angiostrongylus costaricensis. Revista do Instituto de Medicina Tropical de Sao Paulo 38, 171175.Google Scholar
Wang, QP, Lai, DH, Zhu, XQ, Chen, XG and Lun, ZR (2008) Human angiostrongyliasis. The Lancet Infectious Diseases 8, 621630.Google Scholar
Wickham, H (2009) ggplot2: Elegant graphics for data analysis. New York, Springer-Verlag.Google Scholar
Willcox, HP and Coura, JR (1989) A new design of the Baermann, Moraes, Coutinho's technique for the isolation of nematode larvae. Memorias do Instituto Oswaldo Cruz 84, 563565.Google Scholar