Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T11:45:36.707Z Has data issue: false hasContentIssue false

Water–substrate physico-chemistry in wetting dynamics

Published online by Cambridge University Press:  28 September 2015

Petter Johansson
Affiliation:
Department of Theoretical Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
Andreas Carlson*
Affiliation:
John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA Department of Mathematics, University of Oslo, 0316 Oslo, Norway
Berk Hess*
Affiliation:
Department of Theoretical Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We consider the wetting of water droplets on substrates with different chemical composition and molecular spacing, but with an identical equilibrium contact angle. A combined approach of large-scale molecular dynamics simulations and a continuum phase field model allows us to identify and quantify the influence of the microscopic physics at the contact line on the macroscopic droplet dynamics. We show that the substrate physico-chemistry, in particular hydrogen bonding, can significantly alter the flow. Since the material parameters are systematically derived from the atomistic simulations, our continuum model has only one adjustable parameter, which appears as a friction factor at the contact line. The continuum model approaches the atomistic wetting rate only when we adjust this contact line friction factor. However, the flow appears to be qualitatively different when comparing the atomistic and continuum models, highlighting that non-trivial continuum effects can come into play near the interface of the wetting front.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B. & Lindahl, E. 2015 GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 1925.Google Scholar
Bachelor, G. K. 1967 An Introduction to Fluid Mechanics. Cambridge University Press.Google Scholar
Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. 1987 The missing term in effective pair potentials. J. Phys. Chem. 91, 62696271.Google Scholar
Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421423.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.Google Scholar
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267.Google Scholar
Carlson, A., Bellani, G. & Amberg, G. 2012a Contact line dissipation in short-time dynamic wetting. Europhys. Lett. 97, 44004.CrossRefGoogle Scholar
Carlson, A., Bellani, G. & Amberg, G. 2012b Universality in dynamic wetting dominated by contact line friction. Phys. Rev. E 85, 045302.Google ScholarPubMed
Carlson, A., Do-Quang, M. & Amberg, G. 2009 Modeling of dynamic wetting far from equilibrium. Phys. Fluids 21, 121701.Google Scholar
Carlson, A., Do-Quang, M. & Amberg, G. 2011 Dissipation in rapid dynamic wetting. J. Fluid Mech. 682, 213240.Google Scholar
Davidovitch, B., Moro, E. & Stone, H. A. 2005 Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations. Phys. Rev. Lett. 95, 244505.Google Scholar
De Coninck, J. & Blake, T. D. 2008 Wetting and molecular dynamics simulations of simple liquids. Annu. Rev. Mater. Res. 38, 122.Google Scholar
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. 1995 A smooth particle mesh Ewald potential. J. Chem. Phys. 103, 85778592.Google Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.Google Scholar
Gentner, F., Ogonowski, G. & De Coninck, J. 2003 Forced wetting dynamics: a molecular dynamics study. Langmuir 19, 39964003.Google Scholar
Ho, T. A., Papavassiliou, D. V., Lee, L. L. & Striolo, A. 2011 Liquid water can slip on a hydrophilic surface. Proc. Natl Acad. Sci. USA 108, 1617016175.CrossRefGoogle ScholarPubMed
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.CrossRefGoogle Scholar
Janec̆ek, J. & Netz, R. R. 2007 Interfacial water at hydrophobic and hydrophilic surfaces: depletion versus adsorption. Langmuir 23, 84178429.Google Scholar
Koplik, J., Banavar, J. R. & Willemsen, J. F. 1988 Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 12821285.Google Scholar
Lee, S. H. & Rossky, P. J. 1994 A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces – a molecular dynamics simulation study. J. Chem. Phys. 100, 33343345.CrossRefGoogle Scholar
Liu, S., Qin, Y. & Yang, X. 2010 Molecular dynamics simulation of wetting behavior at $\text{CO}_{2}$ /water/solid interfaces. Chin. Sci. Bull. 66, 22522257.Google Scholar
Nakamura, Y., Carlson, A., Amberg, G. & Shiomi, J. 2013 Dynamic wetting at the nanoscale. Phys. Rev. E 88, 033110.Google ScholarPubMed
Qian, T., Wang, X. P. & Sheng, P. 2003 Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306.Google Scholar
Qian, T., Wang, X. P. & Sheng, P. 2004 Power-law slip profile of the moving contact line in two-phase immiscible flows. Phys. Rev. Lett. 93, 094501.Google Scholar
Ren, W., Hu, D. & W., E 2010 Continuum models for the contact line problem. Phys. Fluids 22, 102103.Google Scholar
Ritos, K., Dongari, N., Borg, M. K., Zhang, Y. & Reese, J. M. 2013 Dynamics of nanoscale droplets on moving surfaces. Langmuir 29, 69366943.Google Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 14731484.Google Scholar
Thompson, P. A. & Robbins, M. O. 1989 Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766769.CrossRefGoogle ScholarPubMed
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.Google Scholar
Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T. & Koumoutsakos, P. 2003 On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 13451352.Google Scholar
Winkels, K. G., Weijs, J. H., Eddi, A. & Snoeijer, J. H. 2012 Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85, 055301.Google Scholar
Young, T. 1805 An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. A 95, 6587.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2010 Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279294.Google Scholar