Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-17T17:07:58.835Z Has data issue: false hasContentIssue false

Turbulence measurements in smooth concentric annuli with small radius ratios

Published online by Cambridge University Press:  29 March 2006

K. Rehme
Affiliation:
Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum, 75 Karlsruhe, Germany

Abstract

The structure of turbulence of fully-developed flow through three concentric annuli with small radius ratios was investigated experimentally for a Reynolds number range Re = 2 × 104−2 × 105. Turbulence intensities were measured in three directions, and turbulent shear stresses in the radial and azimuthal direction, in annuli of radius ratios α = 0·02, 0·04 and 0·1, respectively. The results showed that the structure of turbulence for these asymmetric flows is not the same as that for symmetrical flows (tubes and parallel plates). The main difference between symmetrical and asymmetric flows is that, for the latter, the diffusion of turbulent energy plays an important role. This is the reason not only for the non-coincidence of the positions of zero shear stress and maximum velocity, but also for the failure of most turbulence models in calculating asymmetric flows.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobkov, V. P., Ibragimov, M. KH, & Sabelev, G. I. 1968 Generalization of experimental results for the turbulence intensity in turbulent flow in ducts of various cross-sections. IZV. AN SSSR, Mekh. zhi. i Gaza 3, 162. (See also, Kernforschungszentrum Karlsruhe Rep. KFK-tr-361.)Google Scholar
Brighton, J. A. 1963 The structure of fully-developed turbulent flow in annuli. Ph.D. thesis, Purdue University.
Brighton, J. A. & Jones, J. B. 1964 Fully-developed turbulent flow in annuli. J. Basic Engng, D 86, 835.Google Scholar
Coantic, M. 1962 Contribution à 1’étude théorique et experimental de 1’écoulement turbulent dans un tube circulaire. Publ. Sci. Tech. Ministère d l'Air, Paris, Note Tech. no. 113.
Collis, D. C. & Williams, M. J. 1959 Two-dimensional convection from heated wires at low Reynolds numbers. J. Fluid Mech. 6, 357.Google Scholar
Comte-Bellot, G. 1965 Écoulement turbulent entre deux parois parallèles. Publ. Sci. Tech. Ministére d l'Air, Paris, no. 419.
Durst, F. 1968 On turbulent flow through annular passages with smooth and rough cores. M.Sc. thesis, Imperial College, London
Durst, F., Melling, A. & Whitelaw, J. H. 1971 The interpretation of hot wire signals in low turbulence flows. Imperial College, London, Rep. ET/TN/B/5.Google Scholar
Hanjaliø, K. 1970 Two-dimensional asymmetric flow in ducts. Ph.D. thesis, University of London.
Hanjaliø, K. & Launder, B. E. 1968 Fully-developed flow in rectangular ducts of non-uniform surface texture. I. An experimental investigation. Imperial College, London, Rep. TWF/TN/48.Google Scholar
Hanjaliø, K. & Launder, B. E. 1972 A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609.Google Scholar
Jonsson, V. K. & Sparrow, E. M. 1966 Turbulent diffusivity for momentum transfer in concentric annuli. J. Basic Engng, 88, 550.Google Scholar
Kays, W. M. & Leung, E. Y. 1963 Heat transfer in annular passages: hydrodynamically developed turbulent flow with arbitrarily prescribed heat flux. Int. J. Heat Mass Transfer, 6, 537.Google Scholar
Kjellström, B. 1974 Studies of turbulent flow parallel to a rod bundle of triangular array. AB Atomenergi, Studsvik, Rep. AE-487.Google Scholar
Kjellström, B. & Hedberg, S. 1966 On shear stress distributions for flow in smooth or partially rough annuli. AB Atomenergi, Studsvik, Rep. AE-243.Google Scholar
Kjellström, B. & Hedberg, S. 1968 Calibration experiments with a DISA hot-wire anemometer. AB Atomenergi, Studsvik, Rep. AE-338.Google Scholar
Kjellström, B. & Hedberg, S. 1970 Die Eichung eines DISA Hitzdrahtanemometers und Bestätigung der Eichung durch Messungen in einem zylindrischen Kanal. DISA Inf. 9, 8.Google Scholar
Laufer, J. 1954 The structure of turbulence in fully-developed pipe flow. N.A.C.A. Tech. Note, no. 1174.
Lawn, C. J. & Elliott, C. J. 1971 Fully-developed turbulent flow through concentric annuli. C.E.G.B. Rep. RD/B/N/1878.Google Scholar
Nikuradse, J. 1932 Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. VDI-Fosch. Heft, no. 356.Google Scholar
Patel, V. C. 1965 Calibration of the Preston tube and limitations on its use in pressure gradients. J. Fluid Mech. 23, 185.Google Scholar
Rehme, K. 1972 Untersuchungen der Turbulenz- und Schubspannungsverteilung an einem Kreisrohr mit einem Hitzdraht-Anemometer. Kernforschungszentrum Karlsruhe Rep. KFK-1642.Google Scholar
Rehme, K. 1974 Turbulent flow in smooth concentric annuli with small radius ratios. J. Fluid Mech. 64, 263.Google Scholar
Rehme, K. 1975 Turbulente Strömung in konzentrischen Ringspalten. Kernforschungs-zentrum Karlsruhe Rep. KFK-2099.Google Scholar
Reichardt, H. 1951 Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. angew. Math. Mech. 31, 208.Google Scholar
Rowe, D. S. 1973 Measurement of turbulent velocity, intensity and scale in rod bundle flow channels, Battelle Northwest Labs. Rep. BNWL-1736.
Rowe, D. S., Johnson, B. M. & Knudsen, J. G. 1974 Implications concerning rod bundle crossflow mixing based on measurement of turbulent flow structure. Int. J. Heat Mass Transfer, 17, 407.Google Scholar