Published online by Cambridge University Press: 27 April 2017
The dynamics of inviscid-limit, incompressible and axisymmetric swirling flows in finite-length, diverging or contracting, long circular pipes is studied through global analysis techniques and numerical simulations. The inlet flow is described by the profiles of the circumferential and axial velocity together with a fixed azimuthal vorticity while the outlet flow is characterized by a state with zero radial velocity. A mathematical model that is based on the Squire–Long equation (SLE) is formulated to identify steady-state solutions of the problem with special conditions to describe states with separation zones. The problem is then reduced to the columnar (axially-independent) SLE, with centreline and wall conditions for the solution of the outlet flow streamfunction. The solution of the columnar SLE problem gives rise to the existence of four types of solutions. The SLE problem is then solved numerically using a special procedure to capture states with vortex-breakdown or wall-separation zones. Numerical simulations based on the unsteady vorticity circulation equations are also conducted and show correlation between time-asymptotic states and steady states according to the SLE and the columnar SLE problems. The simulations also shed light on the stability of the various steady states. The uniqueness of steady-state solutions in a certain range of swirl is proven analytically and demonstrated numerically. The computed results provide the bifurcation diagrams of steady states in terms of the incoming swirl ratio and size of pipe divergence or contraction. Critical swirls for the first appearance of the various types of states are identified. The results show that pipe divergence promotes the appearance of vortex-breakdown states at lower levels of the incoming swirl while pipe contraction delays the appearance of vortex breakdown to higher levels of swirl and promotes the formation of wall-separation states.