Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:16:19.484Z Has data issue: false hasContentIssue false

Swirling flow states in finite-length diverging or contracting circular pipes

Published online by Cambridge University Press:  27 April 2017

Zvi Rusak*
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
Yuxin Zhang
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
Harry Lee
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
Shixiao Wang
Affiliation:
Department of Mathematics, University of Auckland, Auckland, 1142, New Zealand
*
Email address for correspondence: [email protected]

Abstract

The dynamics of inviscid-limit, incompressible and axisymmetric swirling flows in finite-length, diverging or contracting, long circular pipes is studied through global analysis techniques and numerical simulations. The inlet flow is described by the profiles of the circumferential and axial velocity together with a fixed azimuthal vorticity while the outlet flow is characterized by a state with zero radial velocity. A mathematical model that is based on the Squire–Long equation (SLE) is formulated to identify steady-state solutions of the problem with special conditions to describe states with separation zones. The problem is then reduced to the columnar (axially-independent) SLE, with centreline and wall conditions for the solution of the outlet flow streamfunction. The solution of the columnar SLE problem gives rise to the existence of four types of solutions. The SLE problem is then solved numerically using a special procedure to capture states with vortex-breakdown or wall-separation zones. Numerical simulations based on the unsteady vorticity circulation equations are also conducted and show correlation between time-asymptotic states and steady states according to the SLE and the columnar SLE problems. The simulations also shed light on the stability of the various steady states. The uniqueness of steady-state solutions in a certain range of swirl is proven analytically and demonstrated numerically. The computed results provide the bifurcation diagrams of steady states in terms of the incoming swirl ratio and size of pipe divergence or contraction. Critical swirls for the first appearance of the various types of states are identified. The results show that pipe divergence promotes the appearance of vortex-breakdown states at lower levels of the incoming swirl while pipe contraction delays the appearance of vortex breakdown to higher levels of swirl and promotes the formation of wall-separation states.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Althaus, W., Bruecker, C. & Weimer, M. 1995 Breakdown of slender vortices. In Fluid Vortices (ed. Green, S. I.), pp. 373426. Springer.Google Scholar
Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices (ed. Green, S. I.), chap. 8, pp. 317372. Springer.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, pp. 543555. Cambridge University Press.Google Scholar
Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (04), 593629.Google Scholar
Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown. J. Fluid Mech. 28 (1), 6584.Google Scholar
Beran, P. S. 1994 The time-asymptotic behavior of vortex breakdown in tubes. Comput. Fluids 23 (7), 913937.CrossRefGoogle Scholar
Beran, P. S. & Culick, F. E. C. 1992 The role of non-uniqueness in the development of vortex breakdown in tubes. J. Fluid Mech. 242, 491527.CrossRefGoogle Scholar
Bossel, H. H. 1969 Vortex breakdown flowfield. Phys. Fluids 12 (3), 498508.CrossRefGoogle Scholar
Bragg, S. L. & Hawthorne, W. R. 1950 Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243249.Google Scholar
Brown, G. L. & Lopez, J. M 1990 Axisymmetric vortex breakdown Part 2. Physical mechanisms. J. Fluid Mech. 221, 553576.Google Scholar
Buntine, J. D. & Saffman, P. G. 1995 Inviscid swirling flows and vortex breakdown. Proc. R. Soc. Lond. A 449 (1935), 139153.Google Scholar
Delery, J. M. 1994 Aspects of vortex breakdown. Prog. Aerosp. Sci. 30 (1), 159.Google Scholar
Dennis, D. J. C., Seraudie, C. & Poole, R. J. 2014 Controlling vortex breakdown in swirling pipe flows: experiments and simulations. Phys. Fluids 26 (5), 053602.Google Scholar
Escudier, M. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25 (2), 189229.CrossRefGoogle Scholar
Escudier, M. P. & Keller, J. J. 1983 Vortex breakdown: a two stage transition. AGARD CP 342, 251258.Google Scholar
Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20 (9), 13851400.Google Scholar
Gallaire, F. & Chomaz, J. M. 2003 Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223253.Google Scholar
Gallaire, F. & Chomaz, J.-M. 2004 The role of boundary conditions in a simple model of incipient vortex breakdown. Phys. Fluids 16 (2), 274286.Google Scholar
Gallaire, F., Ruith, M., Meiburg, E., Chomaz, J. M. & Huerre, P. 2006 Spiral vortex breakdown as a global mode. J. Fluid Mech. 549, 7180.Google Scholar
Garg, A. K. & Leibovich, S. 1979 Spectral characteristics of vortex breakdown flowfields. Phys. Fluid 22 (11), 20532064.Google Scholar
Grimshaw, R. & Yi, Z. 1993 Resonant generation of finite-amplitude waves by the uniform flow of a uniformly rotating fluid past an obstacle. Mathematika 40 (01), 3050.Google Scholar
Hall, M. G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4 (1), 195218.Google Scholar
Hanazaki, H. 1996 On the wave excitation and the formation of recirculation eddies in an axisymmetric flow of uniformly rotating fluids. J. Fluid Mech. 322, 165200.Google Scholar
Howard, L. N. & Gupta, A. S. 1962 On the hydrodynamics and hydromagnetic stability of swirling flows. J. Fluid Mech. 14 (03), 463476.Google Scholar
Keller, J. J., Egli, W. & Exley, J. 1985 Force- and loss-free transitions between flow states. Z. Angew. Math. Phys. 36 (6), 854889.CrossRefGoogle Scholar
Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Lavan, Z., Nielsen, H. & Fejer, A. A. 1969 Separation and flow reversal in swirling flows in circular ducts. Phys. Fluids 12 (9), 17471757.Google Scholar
Leclaire, B., Sipp, D. & Jacquin, L. 2007 Near-critical swirling flow in a contracting duct: The case of plug axial flow with solid-body rotation. Phys. Fluids 19 (9), 091701.Google Scholar
Leclaire, B. & Sipp, D. 2010 A sensitivity study of vortex breakdown onset to upstream boundary conditions. J. Fluid Mech. 645, 81119.Google Scholar
Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22 (9), 11921206.Google Scholar
Leibovich, S. & Kribus, A. 1990 Large amplitude wavetrains and solitary waves in vortices. J. Fluid Mech. 216, 459504.Google Scholar
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.Google Scholar
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63 (4), 753763.Google Scholar
Liang, H. & Maxworthy, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech. 525, 115159.Google Scholar
Long, R. R. 1953 Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid. J. Met. 10 (3), 197203.Google Scholar
Lopez, J. M. 1994 On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe. Phys. Fluids 6 (11), 36833693.Google Scholar
Mattner, T. W., Joubert, P. N. & Chong, M. S. 2002 Vortical flow. Part 1: flow through a constant diameter pipe. J. Fluid Mech. 463, 259291.Google Scholar
Mclelland, G., MacManus, D. & Sheaf, C. 2015 The effect of streamtube contraction on the characteristics of a streamwise vortex. Trans. ASME J. Fluids Engng 137 (6), 061204.Google Scholar
Meliga, P., Gallaire, F. & Chomaz, J. M. 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.Google Scholar
Mitchell, A. M. & Delery, J. 2001 Research into vortex breakdown control. Prog. Aerosp. Sci. 37 (4), 385418.Google Scholar
Novak, F. & Sarpkaya, T. 2000 Turbulent vortex breakdown at high Reynolds numbers. AIAA J. 38 (5), 825834.Google Scholar
Qadri, U. A., Mistry, D. & Juniper, M. P. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.Google Scholar
Randall, J. D. & Leibovich, S. 1973 The critical state: a trapped wave model of vortex breakdown. J. Fluid Mech. 58 (3), 495515.Google Scholar
Rayleigh, Lord 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93 (648), 148154.Google Scholar
Ruith, M. R., Chen, P., Meiburg, E. & Maxworthy, T. 2003 Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331378.Google Scholar
Rusak, Z. 1996 Axisymmetric swirling flow around a vortex breakdown point. J. Fluid Mech. 323, 79105.Google Scholar
Rusak, Z. 1998 The interaction of near-critical swirling flows in a pipe with inlet azimuthal vorticity perturbations. Phys. Fluids 10 (7), 16721684.Google Scholar
Rusak, Z. & Judd, K. P. 2001 The stability of non-columnar swirling flows in diverging streamtubes. Phys. Fluids 13 (10), 28352844.Google Scholar
Rusak, Z. & Meder, C. 2004 Near-critical swirling flow in a slightly contracting pipe. AIAA J. 42 (11), 22842293.Google Scholar
Rusak, Z. & Wang, S. 2014 Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating finite-length straight circular pipe. J. Fluid Mech. 759, 321359.Google Scholar
Rusak, Z., Wang, S., Xu, L. & Taylor, S. 2012 On the global nonlinear stability of near-critical swirling flows in a long finite-length pipe and the path to vortex breakdown. J. Fluid Mech. 712, 295326.Google Scholar
Rusak, Z., Whiting, C. H. & Wang, S. 1998 Axisymmetric breakdown of a Q-vortex in a pipe. AIAA J. 36 (10), 18481853.Google Scholar
Sarpkaya, T. 1971 On stationary and traveling vortex breakdowns. J. Fluid Mech. 45 (03), 545559.Google Scholar
Sarpkaya, T. 1974 Effect of adverse pressure-gradient on vortex breakdown. AIAA J. 12 (5), 602607.Google Scholar
Sarpkaya, T. 1995 Turbulent vortex breakdown. Phys. Fluids 7 (10), 23012303.Google Scholar
Snyder, D. O. & Spall, R. E. 2000 Numerical simulation of bubble-type vortex breakdown within a tube-and-vane apparatus. Phys. Fluids 12 (3), 603608.CrossRefGoogle Scholar
Squire, H. B. 1956 Rotating fluids. In Surveys in Mechanics (ed. Batchelor, G. K. & Davies, R. M.), pp. 139161. Cambridge University Press.Google Scholar
Squire, H. B. 1960 Analysis of the vortex breakdown phenomenon. In Miszallaneen der Angewandten Mechanik, pp. 306312. Akademie.Google Scholar
Synge, L. 1933 The stability of heterogeneous liquids. Trans. R. Soc. Can. 27, 118.Google Scholar
Tammisola, O. & Juniper, M. P. 2016 Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.Google Scholar
Umeh, C. O. U., Rusak, Z., Gutmark, E., Villalva, R. & Cha, D. J. 2010 Experimental and computational study of nonreacting vortex breakdown in a swirl-stabilized combustor. AIAA J. 48 (11), 25762585.Google Scholar
Wang, S. & Rusak, Z. 1996 On the stability of an axisymmetric rotating flow in a pipe. Phys. Fluids 8 (4), 10071016.Google Scholar
Wang, S. & Rusak, Z. 1997a The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech. 340, 177223.Google Scholar
Wang, S. & Rusak, Z. 1997b The effect of slight viscosity on a near-critical swirling flow in a pipe. Phys. Fluids 9 (7), 19141927.Google Scholar
Wang, S. & Rusak, Z. 2011 Energy transfer mechanism of the instability of an axisymmetric swirling flow in a finite-length pipe. J. Fluid Mech. 679, 505543.Google Scholar
Wang, S., Rusak, Z., Gong, R. & Liu, F. 2016 On the three-dimensional stability of a solid-body rotation flow in a finite-length rotating pipe. J. Fluid Mech. 797, 284321.Google Scholar
Xu, L.2012 Vortex flow stability, dynamics and feedback stabilization. PhD dissertation, Rensselaer Polytechnic Institute.Google Scholar