Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T11:02:01.069Z Has data issue: false hasContentIssue false

Stable manifolds and the transition to turbulence in pipe flow

Published online by Cambridge University Press:  25 May 2009

D. VISWANATH*
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
P. CVITANOVIĆ
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Email address for correspondence: [email protected]

Abstract

Lower branch travelling waves and equilibria computed in pipe flow and other shear flows appear intermediate between turbulent and laminar motions. We take a step towards connecting these lower branch solutions to transition by deriving a numerical method for finding certain special disturbances of the laminar flow in a short pipe. These special disturbances cause the disturbed velocity field to approach the lower branch solution by evolving along its stable manifold. If the disturbance were slightly smaller, the flow would relaminarize, and if slightly larger, it would transition to a turbulent state.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cvitanović, P., Davidchack, R. L. & Siminos, E. 2007 State space geometry of a spatio-temporally chaotic Kuramoto-Sivashinsky flow. arXiv:0709.2944.Google Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83114.CrossRefGoogle Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274. arXiv:0711.2175.CrossRefGoogle Scholar
Eckhardt, B & Schneider, T. 2008 How does flow in a pipe become turbulent? Euro. Phys. J. B, 64, 457462.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003. Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Faisst, H & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.CrossRefGoogle Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130. arXiv:0705.3957.CrossRefGoogle Scholar
Gilmore, R & Letellier, C. 2007 The Symmetry of Chaos. Oxford University PressCrossRefGoogle Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 611, 365376.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H. et al. . 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flows. Science 305, 15941598.CrossRefGoogle Scholar
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91, 244502.CrossRefGoogle Scholar
Itano, T., & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc Jpn 70, 701714.CrossRefGoogle Scholar
Kawahara, G. 2005 Laminarization of minimal plane Couette flow: going beyond the basin of attraction of turbulence. Phys. Fluids 17, 041702.CrossRefGoogle Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17R44.CrossRefGoogle Scholar
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.CrossRefGoogle Scholar
Kreiss, G., Lundbladh, A. & Henningson, D. S. 1994 Bounds for threshold amplitudes in subcritical shear flows. J. Fluid Mech. 270, 175198.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2006 The role of streamwise perturbations in pipe flow transition. Phys. Fluids 18, 074104.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2007 Pipe flow transition threshold following localized impulsive perturbations. Phys. Fluids 19, 044102.CrossRefGoogle Scholar
Nagata, M. 1990 Three dimensional finite amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Narasimha, R. 1989 The utility and drawbacks of traditional approaches. In Whither Turbulence? Turbulence at the Cross-Road (ed. Lumley, J.), pp. 1348. Springer.Google Scholar
O'Sullivan, P. L. & Breuer, K. S. 1994 Transient growth in circular pipe flow. Part 2. Nonlinear development. Phys. Fluids 6, 36523664.CrossRefGoogle Scholar
Peixinho, J. & Mullin, T. 2007 Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech. 582, 169178.CrossRefGoogle Scholar
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99, 074502.CrossRefGoogle ScholarPubMed
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Schmiegel, A. & Eckhardt, B. 1997 Fractal stability border in plane Couette flow. Phys. Rev. Lett. 79, 5250.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007 a Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 066313.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 b Turbulence transition and edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301. arXiv:0805.1015.CrossRefGoogle ScholarPubMed
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.CrossRefGoogle Scholar
Trefethen, L. N. 2000 Spectral Methods in Matlab. SIAM.CrossRefGoogle Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.CrossRefGoogle Scholar
Viswanath, D. 2008 a The critical layer in pipe flow at high Re. Phil Trans. R. Soc. A. 367, 561576.CrossRefGoogle Scholar
Viswanath, D. 2008 b The dynamics of transition to turbulence in plane Couette flow. In Mathematics and Computation, a Contemporary View: The Abel Symposium 2006 (Munthe-Kaas, H. & Owren, B.), vol. 3, pp. 109127. Springer. arXiv:0701337.CrossRefGoogle Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.CrossRefGoogle Scholar
Wang, J., Gibson, J. F. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.CrossRefGoogle ScholarPubMed
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2008 Coherent structures in localised and global pipe turbulence. Phys. Rev. Lett. 100, 124501.CrossRefGoogle ScholarPubMed
Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarisation and localised ‘edge’ states. J. Fluid Mech. 619, 213233.CrossRefGoogle Scholar
Willis, A. P., Peixinho, J., Kerswell, R. R. & Mullin, T. 2008 Experimental and theoretical progress in pipe flow transition. Phil. Trans. R. Soc. A, 366, 26712684.CrossRefGoogle ScholarPubMed
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech., 59, 281335.CrossRefGoogle Scholar
Wygnanski, I., Sokolov, M. & Friedman, D. 1975 On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283304.CrossRefGoogle Scholar