Published online by Cambridge University Press: 10 October 2008
We perform a three-dimensional stability analysis of the Kelvin–Helmholtz (KH) billow, developing in a shear layer between two fluids with different density. We begin with two-dimensional simulations of the temporally evolving mixing layer, yielding the unsteady base flow fields. The Reynolds number is 1500 while the Schmidt and Froude numbers are infinite. Then exponentially unstable modes are extracted from a linear stability analysis performed at the saturation of the primary mode kinetic energy. The spectrum of the least stable modes exhibits two main classes. The first class comprises three-dimensional core-centred and braid-centred modes already present in the homogeneous case. The baroclinic vorticity concentration in the braid lying on the light side of the KH billow turns the flow into a sharp vorticity ridge holding high shear levels. The hyperbolic modes benefit from the enhanced level of shear in the braid whereas elliptic modes remain quite insensitive to the modifications of the base flow. In the second class, we found typical two-dimensional modes resulting from a shear instability of the curved vorticity-enhanced braid. For a density contrast of 0.5, the wavelength of the two-dimensional instability is about ten times shorter than that of the primary wave. Its amplification rate competes well against those of the hyperbolic three-dimensional modes. The vorticity-enhanced braid thus becomes the preferred location for the development of secondary instabilities. This stands as the key feature of the transition of the variable-density mixing layer. We carry out a fully resolved numerical continuation of the nonlinear development of the two-dimensional braid-mode. Secondary roll-ups due to a small-scale Kelvin–Helmholtz mechanism are promoted by the underlying strain field and develop rapidly in the compression part of the braid. Originally analysed by Reinoud et al. (Phys. Fluids, vol. 12, 2000, p. 2489) from two-dimensional non-viscous numerical simulations, this instability is shown to substantially increase the mixing.