Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T17:47:47.927Z Has data issue: false hasContentIssue false

Spectral properties and universal behaviour of advecting–diffusing scalar fields in finite-length channels

Published online by Cambridge University Press:  10 October 2008

M. GIONA
Affiliation:
Dipartimento di Ingegneria Chimica, Università di Roma “La Sapienza”, via Eudossiana 18, 00184Roma
S. CERBELLI
Affiliation:
Dipartimento di Ingegneria Chimica, Università di Roma “La Sapienza”, via Eudossiana 18, 00184Roma
F. CRETA
Affiliation:
Dipartimento di Meccanica ed Aeronautica, Università di Roma “La Sapienza”, via Eudossiana 18, 00184Roma

Abstract

This paper analyses the relaxation towards the steady state of an advecting–diffusing field in a finite-length channel. The dominant eigenvalue, −-ΛF, of the advection–diffusion operator provides the slowest relaxation time scale for achieving steady state in open flow devices. We focus on parallel flows and analyse how ΛF depends on the velocity profile and the molecular diffusivity. As a result of the universal localization features of the eigenfunction associated with ΛF, we find that ΛF can be predicted analytically based on the local behaviour of the velocity profile near the stagnation points. Microfluidic applications of the theory are also addressed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 6777.Google Scholar
Backus, G. 1958 A class of self-sustaining dissipative spherical dynamos. Annals Phys. 4, 372447.CrossRefGoogle Scholar
Beigie, D., Leonard, A. & Wiggins, S. 1991 A global study of enhanced stretching and diffusion in chaotic tangles. Phys. Fluids A 3, 10391050.CrossRefGoogle Scholar
Bender, C. M. 2007 Making sense of non-Hermitians Hamiltonians. Rep. Prog. Phys. 70, 9471018.CrossRefGoogle Scholar
Chertkov, M. & Lebedev, V. 2003 Boundary effects on chaotic advection–diffusion chemical reactions. Phys. Rev. Lett. 90, 134501.CrossRefGoogle ScholarPubMed
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: Non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Danckwerts, P. V. 1953 Continuous flow systems. Chem. Engng Sci. 2, 113.CrossRefGoogle Scholar
Dorey, P., Millican-Slater, A. & Tateo, R. Beyond the WKB approximation in PT-symmetric quantum mechanics. J. Phys. A 38, 1305–1331.CrossRefGoogle Scholar
Fannjiang, A. & Papanicolaou, G. 1994 Convection enhanced diffusion for periodic flows. SIAM J. Appl. Maths 54, 333408.CrossRefGoogle Scholar
Fannjiang, A. & Papanicolaou, G. 1997 Convection-enhanced diffusion for random flows. J. Statist Phys. 88, 10331076.CrossRefGoogle Scholar
Farina, L. & Rinaldi, S. 2000 Positive Linear Systems. Theory and applications. John Wiley and Sons.CrossRefGoogle Scholar
Gilbert, A. D. 2006 Advected fields in maps – III. Passive scalar decay in baker's maps. Dyn. Syst. 21, 2571.CrossRefGoogle Scholar
Giona, M., Adrover, A. & Cerbelli, S. 2005 On the use of the pulsed-convection approach for modelling advection–diffusion in chaotic flows - A prototypical example and direct numerical simulations. Physica A 348, 3773.CrossRefGoogle Scholar
Giona, M., Adrover, A., Cerbelli, S. & Vitacolonna, V. 2004 a Spectral properties and transport machanisms of partially chaotic bounded flows in the presence of diffusion. Phys. Rev. Lett. 92, 114101.CrossRefGoogle Scholar
Giona, M., Cerbelli, S. & Vitacolonna, V. 2004 b Universality and imaginary potentials in advection–diffusion equations in closed flows. J. Fluid Mech. 513, 221237.CrossRefGoogle Scholar
Kandlikar, S. G., Garimella, S., Li, D., Colin, S. & King, M. R. 2006 Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier.Google Scholar
Karniandakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows. Springer.Google Scholar
Majda, A. J. & Kramer, P. R. 1999 Simplified models for turbulent diffusion: Theory, numerical modelling and physical phenomena. Phys. Rep. 314, 237574.CrossRefGoogle Scholar
Mathews, J. H. & Fink, K. K. 2004 Numerical Methods using Matlab. Prentice-Hall.Google Scholar
Pierrehumbert, R. T. 1994 Tracer microstructure in large-eddy dominated regime. Chaos Solitons Fractals 4, 10911110.CrossRefGoogle Scholar
Pikovsky, A. & Popovych, O. 2003 Persistent patterns in deterministic mixing flows. Europhys. Lett. 61, 625631.CrossRefGoogle Scholar
Popovych, O. V., Pikovsky, A. & Eckhardt, B. 2007 Abnormal mixing of passive scalars in chaotic flows. Phys. Rev. E 75, 036308.Google ScholarPubMed
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Smith, R. 1988 Entry and exit conditions for flow reactors. IMA J. Appl. Maths. 41, 120.CrossRefGoogle Scholar
Straube, A. V. & Pikovsky, A. 2007 Mixing-induced global modes in open active flow. Phys. Rev. Lett. 99, 184503.CrossRefGoogle ScholarPubMed
Taylor, G. 1953 Dispersion of soluble matter in a solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Taylor, G. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223, 446468.Google Scholar
Tel, T., de Moura, A., Grebogi, C. & Karolyi, G. 2005 Chemical and biological activity in open flows: A dynamical system approach. Phys. Rep. 413, 91196.CrossRefGoogle Scholar