Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:17:43.217Z Has data issue: false hasContentIssue false

Single-dielectric barrier discharge plasma actuator modelling and validation

Published online by Cambridge University Press:  16 February 2011

BENJAMIN E. MERTZ
Affiliation:
Aerospace and Mechanical Engineering Department, Institute for Flow Physics and Control, University of Notre Dame, Notre Dame, IN 46556, USA
THOMAS C. CORKE*
Affiliation:
Aerospace and Mechanical Engineering Department, Institute for Flow Physics and Control, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: [email protected]

Abstract

Single-dielectric barrier discharge (SDBD) plasma actuators have gained a great deal of world-wide interest for flow-control applications. With this has come the need for flow-interaction models of plasma actuators that can be used in computational flow simulations. SDBD plasma actuators consist of two electrodes: one uncovered and exposed to the air and the other encapsulated by a dielectric material. An AC electric potential is supplied to the electrodes. When the AC potential is large enough, the air in the region over the encapsulated electrode ionizes. The ionized air in the presence of the electric field results in a space–time dependent body force vector field. The body force is the mechanism for flow control. This study describes a semi-empirical model that has been developed to capture the dynamic nature of the local air ionization and time-dependent body force vector distribution. Validation of the model includes comparisons to experimentally measured space–time charge distribution and the time-resolved and time-averaged body force. Two flow simulations are then used to further validate the SDBD plasma actuator model. These involved an impulsively started plasma actuator in still air, and the flow around a circular cylinder in which plasma actuators were used to suppress the Karman vortex street. In both cases, the simulations agreed well with the experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auerback, D. 1987 Experiments on the trajectory and circulation of the starting vortex. J. Fluid Mech. 183, 185198.CrossRefGoogle Scholar
BenGadri, R., Rabehi, A., Massines, F. & Segur, P. 1994 Numerical modelling of atmospheric pressure low-frequency glow discharge between insulated electrodes. In Proceedings of the XIIth ESCAMPIG, Noordwijkerhout The Netherlands, August 23–26, pp. 228–229.Google Scholar
Boeuf, J. P., Lagmich, Y., Unfer, T., Callegari, T. & Pitchford, L. 2007 Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D: Appl. Phys. 40, 652662.CrossRefGoogle Scholar
Corke, T., Post, M. & Orlov, D. 2009 Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp. Fluids 46, 126.CrossRefGoogle Scholar
Corke, T. C., Post, M. L. & Orlov, D. M. 2007 SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog. Aerosp. Sci. 43, 193217.CrossRefGoogle Scholar
Davidson, G. & O'Neil, R. 1964 Optical radiation from nitrogen and air at high pressure excited by energetic electrons. J. Chem. Phys. 41, 39463949.CrossRefGoogle Scholar
Durbin, P. A. 1995 Separated flow computations with the k−ε−v 2 model. AIAA J. 33 (4), 659664.CrossRefGoogle Scholar
Eliasson, B. & Kogelschatz, U. 1991 Modeling and applications of silent discharge plasmas. IEEE Trans. Plasma Sci. 19, 309.CrossRefGoogle Scholar
Enloe, C., McHarg, M. & McLaughlin, T. 2008 Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J. Appl. Phys. 103. 073302.CrossRefGoogle Scholar
Enloe, L., McLaughlin, T., VanDyken, K., Jumper, E. & Corke, T. 2004 a Mechanisms and responses of a single-dielectric barrier plasma actuator: plasma morphology. AIAA J. 42, 589594.CrossRefGoogle Scholar
Enloe, L., McLaughlin, T., VanDyken, K., Jumper, E., Corke, T., Post, M. & Haddad, O. 2004 b Mechanisms and responses of a single-dielectric barrier plasma actuator: geometric effects. AIAA J. 42, 595604.CrossRefGoogle Scholar
Falkenstein, Z. & Coogan, J. 1997 Microdischarge behaviour in the silent discharge of nitrogen–oxygen and water–air mixtures. J. Phys. D: Appl. Phys. 30, 817825.CrossRefGoogle Scholar
Forte, M., Jolibois, J., Moreau, E., Touchard, G. & Cazalens, M. 2006 Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity – application to airflow control. AIAA Paper 2006-2863.CrossRefGoogle Scholar
Gibalov, V. & Pietsch, G. 2000 The development of dielectric barrier discharges in gas gaps and surfaces. J. Phys. D: Appl. Phys. 33, 2618.CrossRefGoogle Scholar
Kogelschatz, U. 2002 Filamentary, patterned and diffuse discharges. IEEE Trans. Plasma Sci. 30, 4, 14001408.CrossRefGoogle Scholar
Massines, F., Rabehi, A., Decomps, P., Ben Gadri, R., Segur, P. & Mayoux, C. 1998 Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys. 83, 6, 29502957.CrossRefGoogle Scholar
Menter, F. R. 1994 Two-equation eddy–viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.CrossRefGoogle Scholar
Mertz, B. E. 2010 Refinement, validation and implementation of lumped circuit element model for single dielectric barrier discharge plasma actuators. PhD thesis, University of Notre Dame.Google Scholar
Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. Princeton University Press.Google Scholar
Orlov, D. & Corke, T. 2005 Numerical simulation of aerodynamic plasma actuator effects. AIAA Paper 2005-1083.CrossRefGoogle Scholar
Orlov, D., Corke, T. & Haddad, O. 2003 DNS modeling of plasma array flow actuators. In Bulletin of the American Physical Society Division of Fluid Dynamics, 23–25 November, Vol. 48, East Rutherford, NJ.Google Scholar
Orlov, D., Corke, T. & Patel, M. 2006 Electric circuit model for aerodynamic plasma actuator. AIAA Paper 2006-1206.CrossRefGoogle Scholar
Orlov, D., Font, G. & Edelstein, D. 2008 Characterization of discharge modes of plasma actuators. AIAA J. 46, 31423148.CrossRefGoogle Scholar
Orlov, D. M. 2006 Modelling and simulation of single dielectric barrier discharge plasma actuators. PhD thesis, University of Notre Dame.Google Scholar
Pierce, A. D. 1989 Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America.Google Scholar
Porter, C. O., Baughn, J. W., McLaughlin, T. E., Enloe, C. L. & Font, G. I. 2006 Temporal force measurements on an aerodynamic plasma actuator. AIAA Paper 2006-104.CrossRefGoogle Scholar
Post, M. & Corke, T. 2005 Overview of plasma flow control: concepts, optimization, and application. AIAA Paper 2005-0563.Google Scholar
Post, M. L. 2001 Phased plasma actuators for unsteady flow control. Master's thesis, University of Notre Dame.Google Scholar
Post, M. L. 2004 Plasma actuators for separation control on stationary and unstationary airfoils. PhD thesis, University of Notre Dame.CrossRefGoogle Scholar
Rabehi, A., BenGadri, R., Segur, P., Massines, F. & Decomps, P. 1994 Numerical modelling of high pressure glow discharges controlled by dielectric barrier. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Arlington, TX, October 23–26, pp. 840–845.Google Scholar
Roth, J. R. 1995 Industrial Plasma Engineering. Institute of Physics Publishing, ISBN 5098538.Google Scholar
Saffman, P. G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84, 625639.CrossRefGoogle Scholar
Singh, K. & Roy, S. 2008 Force approximation for a plasma actuator operating in atmospheric air. J. Appl. Phys. 103, 013305.CrossRefGoogle Scholar
Thomas, F., Corke, T., Iqbal, M., Kozlov, A. & Shatzman, D. 2010 Optimization of SDBD plasma actuators for active aerodynamic flow control. AIAA J. 47 (9), 21692177.CrossRefGoogle Scholar
Thomas, F., Kozlov, A. & Corke, T. 2008 Plasma actuators for cylinder flow control and noise reduction. AIAA J. 46 (8), 19121920.CrossRefGoogle Scholar
Vidmar, R. & Stalter, K. 2003 Air chemistry and power to generate and sustain plasma: plasma lifetime calculations. AIAA Paper 2003-1189.CrossRefGoogle Scholar
Voikov, V., Corke, T. & Haddad, O. 2004 Numerical simulation of flow control over airfoils using plasma actuators. In Bulletin of the American Physical Society Division of Fluid Dynamics, 21–23 November, Vol. 49, Seattle, WA.Google Scholar