Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T21:27:31.620Z Has data issue: true hasContentIssue false

Rectilinear propagation of quasi-monopolar vorticity patches

Published online by Cambridge University Press:  09 October 2020

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA93943, USA
*
Email address for correspondence: [email protected]

Abstract

This study presents a class of steadily translating two-dimensional approximately circular vortices. The proposed solutions take the form of a superposition of two nearly concentric vorticity patches with zero net vorticity. Exact quasi-monopolar solutions of this type are found for propagation speeds that are much less than typical azimuthal velocities. While all V-states obtained are shown to be formally unstable, a large subset of configurations is characterized by very low growth rates. Fully nonlinear simulations reveal that such nearly stable eddies can propagate large distances from the point of origin while maintaining their structure and intensity. Therefore, the proposed solutions can serve as models of geophysical vortices that are known to drift relative to the ambient fluid, often exhibiting remarkable longevity and resilience to external perturbations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berestov, A. L. 1979 Solitary Rossby waves. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 15, 443447.Google Scholar
Carton, X. J. 2001 Hydrodynamical modeling of oceanic vortices. Surv. Geophys. 22, 179263.10.1023/A:1013779219578CrossRefGoogle Scholar
Carton, X. J., Flierl, G. R. & Polvani, L. M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Eur. Phys. Lett. 9, 339344.10.1209/0295-5075/9/4/007CrossRefGoogle Scholar
Chaplygin, S. A. 1903 One case of vortex motion in fluid. Trans. Phys. Sect. Imperial Moscow Soc. Friends Nat. Sci. 11, 1114.Google Scholar
Chelton, D. B., Schlax, M. G. & Samelson, R. M. 2011 Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167216.10.1016/j.pocean.2011.01.002CrossRefGoogle Scholar
Chen, G. & Han, G. 2019 Contrasting short-lived with long-lived mesoscale eddies in the global ocean. J. Geophys. Res. 124, 31493167.10.1029/2019JC014983CrossRefGoogle Scholar
Dritschel, D. G. 1986 The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172, 157182.10.1017/S0022112086001696CrossRefGoogle Scholar
Dritschel, D. G. 1988 The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech. 194, 511517.10.1017/S0022112088003088CrossRefGoogle Scholar
Dritschel, D. G. 1989 Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep. 10, 77146.10.1016/0167-7977(89)90004-XCrossRefGoogle Scholar
Dritschel, D. G. 1995 A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269303.10.1017/S0022112095001716CrossRefGoogle Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.10.1017/S0022112088003283CrossRefGoogle Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5, 141.10.1016/0377-0265(80)90009-3CrossRefGoogle Scholar
Flór, J. B. & Eames, I. 2002 Dynamics of monopolar vortices on a topographic beta-plane. J. Fluid Mech. 456, 353376.10.1017/S0022112001007728CrossRefGoogle Scholar
Fratantoni, D. M., Johns, W. E. & Townsend, T. L. 1995 Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. J. Geophys. Res. Oceans 100, 1063310654.10.1029/95JC00925CrossRefGoogle Scholar
van Heijst, G. J. F. & Kloosterziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569571.10.1038/338569a0CrossRefGoogle Scholar
van Heijst, G. J. F., Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.10.1017/S0022112091002069CrossRefGoogle Scholar
Lamb, H. 1895 Hydrodynamics, 2nd edn. Cambridge University Press. 738 pp.Google Scholar
Makarov, V. G. & Kizner, Z. 2011 Stability and evolution of uniform-vorticity dipoles. J. Fluid Mech. 672, 307325.10.1017/S0022112010006026CrossRefGoogle Scholar
Meleshko, V. V. & van Heijst, G. J. F. 1994 On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 272, 157182.10.1017/S0022112094004428CrossRefGoogle Scholar
Olson, D. B. 1991 Rings in the ocean. Annu. Rev. Earth Planet. Sci. 19, 283311.10.1146/annurev.ea.19.050191.001435CrossRefGoogle Scholar
Orlandi, P. & van Heijst, G. J. F. 1992 Numerical simulation of tripolar vortices in 2D flow. Fluid Dyn. Res. 9, 179206.10.1016/0169-5983(92)90004-GCrossRefGoogle Scholar
Overman, E. A. & Zabusky, N. J. 1982 Evolution and merger of isolated vortex structures. Phys. Fluids 25, 12971305.10.1063/1.863907CrossRefGoogle Scholar
Pierrehumbert, R. T. 1980 A family of steady, translating vortex pairs with distributed vorticity. J. Fluid Mech. 99, 129144.10.1017/S0022112080000559CrossRefGoogle Scholar
Radko, T. 2008 Long range interaction and elastic collisions of isolated vortices. J. Fluid Mech. 610, 285310.10.1017/S0022112008002632CrossRefGoogle Scholar
Radko, T. & Stern, M. E. 1999 On the propagation of oceanic mesoscale vortices. J. Fluid Mech. 380, 3957.10.1017/S0022112098003371CrossRefGoogle Scholar
Radko, T. & Stern, M. E. 2000 Self-propagating eddies on the stratifed f-plane. J. Phys. Oceanogr. 30, 31343144.10.1175/1520-0485(2000)030<3134:SPEOTS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Robinson, A. R. (ed.) 1983 Eddies in Marine Science. Springer-Verlag.10.1007/978-3-642-69003-7CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Samelson, R. M., Schlax, M. G. & Chelton, D. B. 2014 Randomness, symmetry, and scaling of mesoscale eddy lifecycles. J. Phys. Oceanogr. 44, 10121029.10.1175/JPO-D-13-0161.1CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2014 Dynamics of Vortex Structures in a Stratified Rotating Fluid. Atmospheric and Oceanographic Sciences Library, vol. 47, 382 pp. Springer.10.1007/978-3-319-00789-2CrossRefGoogle Scholar
Stern, M. E. 1987 Horizontal entrainment and detrainment in large-scale eddies. J. Phys. Oceanogr. 17, 16881695.10.1175/1520-0485(1987)017<1688:HEADIL>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Stern, M. E. & Pratt, L. J. 1985 Dynamics of vorticity fronts. J. Fluid Mech. 161, 513532.10.1017/S0022112085003032CrossRefGoogle Scholar
Stern, M. E. & Radko, T. 1998 The self-propagating quasi-monopolar vortex. J. Phys. Oceanogr. 28, 2239.10.1175/1520-0485(1998)028<0022:TSPQMV>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Sutyrin, G. G. & Flierl, G. R. 1994 Intense vortex motion on the beta plane: Development of the beta gyres. J. Atmos. Sci. 51, 773790.10.1175/1520-0469(1994)051<0773:IVMOTB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Swenson, M. 1987 Instability of equivalent-barotropic riders. J. Phys. Oceanogr. 17, 492506.10.1175/1520-0485(1987)017<0492:IOEBR>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Wu, H. M., Overman, E. A. & Zabusky, N. J. 1984 Steady-state solutions of the Euler equations in two dimensions: Rotating and translating V-states with limiting cases. Part I: Numerical algorithms and results. J. Comput. Phys. 53, 4271.10.1016/0021-9991(84)90051-2CrossRefGoogle Scholar