Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T14:51:13.038Z Has data issue: false hasContentIssue false

Phase diagram for droplet impact on superheated surfaces

Published online by Cambridge University Press:  21 August 2015

Hendrik J. J. Staat
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Tuan Tran
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Bart Geerdink
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Guillaume Riboux
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
Chao Sun
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Center for Combustion Energy and Department of Thermal Engineering, Tsinghua University, 100084 Beijing, China
José Manuel Gordillo
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
Detlef Lohse*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
*
Email address for correspondence: [email protected]

Abstract

We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing $\mathit{We}$, and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing $T$. Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature $T_{L}$ to the Leidenfrost state depends weakly, at most, on $\mathit{We}$ in the parameter regime of the present study, the transition Weber number $\mathit{We}_{C}$ towards splashing shows a strong dependence on $T$ and a discontinuity at $T_{L}$. We quantitatively explain the splashing transition for $T<T_{L}$ by incorporating the temperature dependence of the physical properties in the theory by Riboux & Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernardin, J. D., Stebbins, C. J. & Mudawar, I. 1997 Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Intl J. Heat Mass Transfer 40 (2), 247267.CrossRefGoogle Scholar
Biance, A. L., Pirat, C. & Ybert, C. 2011 Drop fragmentation due to hole formation during Leidenfrost impact. Phys. Fluids 23, 022104.CrossRefGoogle Scholar
Bouwhuis, W., van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.CrossRefGoogle ScholarPubMed
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.Google Scholar
Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 82 (3), 036302.CrossRefGoogle ScholarPubMed
Inada, S., Miyasaka, Y., Sakamoto, K. & Hojo, K. 1988 Liquid–solid contact state and fluctuation of the vapor film thickness of a drop impinging on a heated surface. J. Chem. Engng Japan 21 (5), 463468.CrossRefGoogle Scholar
Khavari, M., Sun, C., Lohse, D. & Tran, T. 2015 Fingering patterns during droplet impact on heated surfaces. Soft Matt. 11 (17), 32983303.CrossRefGoogle ScholarPubMed
Kolinski, J., Rubinstein, S., Mandre, S., Brenner, M. P., Weitz, D. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108 (7), 074503.CrossRefGoogle ScholarPubMed
Latka, A., Strandburg-Peshkin, A., Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2012 Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109 (5), 054501.CrossRefGoogle ScholarPubMed
Lembach, A. N., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C. & Yarin, A. L. 2010 Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir 26 (12), 95169523.CrossRefGoogle ScholarPubMed
Levin, Z. & Hobbs, P. V. 1971 Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. A 269, 555585.Google Scholar
Liu, Y., Tan, P. & Xu, L. 2015 Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. Proc. Natl Acad. Sci. USA 112 (11), 32803284.CrossRefGoogle Scholar
Mandre, S. & Brenner, M. P. 2011 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.CrossRefGoogle Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.CrossRefGoogle ScholarPubMed
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet-wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21 (2), 151173.CrossRefGoogle Scholar
Nair, H., Staat, H. J. J., Tran, T., van Houselt, A., Prosperetti, A., Lohse, D. & Sun, C. 2014 The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matt. 10 (13), 21022109.CrossRefGoogle ScholarPubMed
Palacios, J., Hernández, J., Gómez, P., Zanzi, C. & López, J. 2013 Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces. Exp. Therm. Fluid Sci. 44, 571582.CrossRefGoogle Scholar
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45 (1), 197215.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid-drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.CrossRefGoogle Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.Google Scholar
Riboux, G. & Gordillo, J. M. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.CrossRefGoogle Scholar
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.CrossRefGoogle Scholar
Shirota, M., van Limbeek, M. A. J., Sun, C., Prosperetti, A. & Lohse, D.2015. Dynamic Leidenfrost temperature for droplet impact on an isothermal superheated surface (submitted).Google Scholar
Sinha-Ray, S., Zhang, Y. & Yarin, A. L. 2011 Thorny devil nanotextured fibers: the way to cooling rates on the order of $1~\text{kW}~\text{cm}^{-2}$ . Langmuir 27 (1), 215226.CrossRefGoogle Scholar
Stevens, C. S. 2014 Scaling of the splash threshold for low-viscosity fluids. Europhys. Lett. 106 (2), 24001.CrossRefGoogle Scholar
Thoroddsen, S. T. & Sakakibara, J. 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10 (6), 13591374.CrossRefGoogle Scholar
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.CrossRefGoogle ScholarPubMed
Tran, T., Staat, H. J. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H. J. G. E., Prosperetti, A., Lohse, D. & Sun, C. 2013 Droplet impact on superheated micro-structured surfaces. Soft Matt. 9 (12), 32723282.CrossRefGoogle Scholar
Tsai, P., Hendrix, M. H. W., Dijkstra, R. R. M., Shui, L. & Lohse, D. 2011 Microscopic structure influencing macroscopic splash at high Weber number. Soft Matt. 7 (24), 1132511333.CrossRefGoogle Scholar
Vargaftik, N. B. 1975 Handbook of Physical Properties of Liquids and Gases. Springer.CrossRefGoogle Scholar
van der Veen, R. C. A., Hendrix, M. H. W., Tran, T., Sun, C., Tsai, P. A. & Lohse, D. 2014 How microstructures affect air film dynamics prior to drop impact. Soft Matt. 10 (21), 37033707.CrossRefGoogle ScholarPubMed
Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D. & Sun, C. 2015 Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matt. 11 (9), 17081722.CrossRefGoogle Scholar
Visser, C. W., Tagawa, Y., Sun, C. & Lohse, D. 2012 Microdroplet impact at very high velocity. Soft Matt. 8 (41), 1073210737.CrossRefGoogle Scholar
Wachters, L. H. J. & Westerling, N. A. J. 1966 The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng Sci. 21, 10471056.CrossRefGoogle Scholar
Wang, A. B., Lin, C. H. & Chen, C. C. 2000 The critical temperature of dry impact for tiny droplet impinging on a heated surface. Phys. Fluids 12, 16221625.CrossRefGoogle Scholar
Weickgenannt, C. M., Zhang, Y., Sinha-Ray, S., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C. & Yarin, A. L. 2011 Thorny devil nanotextured fibers: the way to cooling rates on the order of $1~\text{kW}~\text{cm}^{-2}$ . Phys. Rev. E 84 (3), 036310.Google Scholar
Worthington, A. M. 1876 On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25 (171-178), 261272.Google Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94 (18), 184505.CrossRefGoogle ScholarPubMed
Yao, S. C. & Cai, K. Y. 1988 The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles. Exp. Therm. Fluid Sci. 1 (4), 363371.CrossRefGoogle Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283 (1), 141173.CrossRefGoogle Scholar