Published online by Cambridge University Press: 26 April 2006
Our main objective is to identify a boundary-value problem capable of describing the dynamics of fluids having moving contact lines. A number of models have been developed over the past decade and a half for describing the dynamics of just such fluid systems. We begin by discussing the deficiencies of the methods used in some of these investigations to evaluate the parameters introduced by their models. In this study we are concerned exclusively with the formulation of a boundary-value problem which can describe the dynamics of the fluids excluding that lying instantaneously in the immediate vicinity of the moving contact line. From this perspective, many of the approaches referred to above are equivalent, that is to say they give rise to velocity fields with the same asymptotic structure near the moving contact line. Part of our objecive is to show that this asymptotic structure has only one parameter. A substantial portion of our investigation is devoted to determining whether or not the velocity field in a particular experiment has this asymptotic structure, and to measuring the value of the parameter.
More specifically, we use the shape of the fluid interface in the vicinity of the moving contact line to identify the asymptotic structure of the dynamics of the fluid. Experiments are performed in which silicone oil displaces air through a gap formed between two parallel narrowly-spaced glass microscope slides sealed along two opposing sides. Since we were unable to make direct measurements of the shape of the fluid interface close to the moving contact line, an indirect procedure has been devised for determining its shape from measurements of the apex height of the meniscus. We find that the deduced fluid interface shape compares well with the asymptotic form identified in the studies referred to above; however, systematic deviations do arise. The origin of these deviations is unclear. They could be attributed to systematic experimental error, or, to the fact that our analysis (valid only for small values of the capillary number) is inadequate at the conditions of our experiments.