Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T04:51:05.477Z Has data issue: false hasContentIssue false

Modulation of the turbulence regeneration cycle by inertial particles in planar Couette flow

Published online by Cambridge University Press:  28 December 2018

G. Wang*
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
D. H. Richter*
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Two-way coupled direct numerical simulations are used to investigate the effects of inertial particles on self-sustained, turbulent coherent structures (i.e. the so-called regeneration cycle) in plane Couette flow at low Reynolds number just above the onset of transition. Tests show two limiting behaviours with increasing particle inertia, similar to the results from previous linear stability analyses: low-inertia particles trigger the laminar-to-turbulent instability whereas high-inertia particles tend to stabilize turbulence due to the extra dissipation induced by particle–fluid coupling. Furthermore, it is found that the streamwise coupling between phases is the dominant factor in damping of the turbulence and is highly related to the spatial distribution of the particles. The presence of particles in different turbulent coherent structures (large-scale vortices or large-scale streaks) determines the turbulent kinetic energy of particulate phase, which is related to the particle response time scaled by the turnover time of large-scale vortices. By quantitatively investigating the periodic character of the whole regeneration cycle and the phase difference between linked sub-steps, we show that the presence of inertial particles does not alter the periodic nature of the cycle or the relative length of each of the sub-steps. Instead, high-inertia particles greatly weaken the large-scale vortices as well as the streamwise vorticity stretching and lift-up effects, thereby suppressing the fluctuating amplitude of the large-scale streaks. The primary influence of low-inertia particles, however, is to strengthen the large-scale vortices, which fosters the cycle and ultimately reduces the critical Reynolds number.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid. Mech. 42, 111133.Google Scholar
Bech, K. H., Tillmark, N., Alfredsson, P. H. & Andersson, H. I. 1995 An investigation of turbulent plane Couette flow at low Reynolds numbers. J. Fluid Mech. 286, 291326.Google Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.Google Scholar
Burton, T. M. & Eaton, J. K. 2005 Full resolved simulations of particle–turbulence interaction. J. Fluid Mech. 545, 67111.Google Scholar
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.Google Scholar
Capecelatro, J., Desjardins, O. & Fox, R. O. 2018 On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499519.Google Scholar
DeSpirito, J. & Wang, L.-P. 2001 Linear instability of two-way coupled particle-laden jet. Intl J. Multiphase Flow 27 (7), 11791198.Google Scholar
Dimas, A. & Kiger, K. 1998 Linear instability of a particle-laden mixing layer with a dynamic dispersed phase. Phys. Fluids 10 (10), 25392557.Google Scholar
Dritselis, C. D. & Vlachos, N. S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20 (5), 055103.Google Scholar
Druzhinin, O. & Elghobashi, S. 1998 Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Phys. Fluids 10 (3), 685697.Google Scholar
Eaton, J. K. & Fessler, J. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.Google Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.Google Scholar
Elghobashi, S. & Truesdell, G. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I. Turbulence modification. Phys. Fluids A 5 (7), 17901801.Google Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.Google Scholar
Garratt, J. R. 1994 The atmospheric boundary layer. Earth-Sci. Rev. 37 (1–2), 89134.Google Scholar
Gore, R. & Crowe, C. T. 1989 Effect of particle size on modulating turbulent intensity. Intl J. Multiphase Flow 15 (2), 279285.Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.Google Scholar
Hamilton, J. M. & Abernathy, F. H. 1994 Streamwise vortices and transition to turbulence. J. Fluid Mech. 264, 185212.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Inoue, M., Mathis, R., Marusic, I. & Pullin, D. 2012 Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24 (7), 075102.Google Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.Google Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kitoh, O., Nakabyashi, K. & Nishimura, F. 2005 Experimental study on mean velocity and turbulence characteristics of plane Couette flow: low-Reynolds-number effects and large longitudinal vortical structure. J. Fluid Mech. 539, 199227.Google Scholar
Klinkenberg, J., De Lange, H. & Brandt, L. 2011 Modal and non-modal stability of particle-laden channel flow. Phys. Fluids 23 (6), 064110.Google Scholar
Klinkenberg, J., de Lange, H. & Brandt, L. 2014 Linear stability of particle laden flows: the influence of added mass, fluid acceleration and Basset history force. Meccanica 49 (4), 811827.Google Scholar
Klinkenberg, J., Sardina, G., De Lange, H. & Brandt, L. 2013 Numerical study of laminar-turbulent transition in particle-laden channel flow. Phys. Rev. E 87 (4), 043011.Google Scholar
Komminaho, J., Lundbladh, A. & Johansson, A. V. 1996 Very large structures in plane turbulent Couette flow. J. Fluid Mech. 320, 259285.Google Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 023303.Google Scholar
Li, Y., McLaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.Google Scholar
Majji, M. V., Banerjee, S. & Morris, J. F. 2018 Inertial flow transitions of a suspension in Taylor–Couette geometry. J. Fluid Mech. 835, 936969.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Massot, M. 2007 Eulerian multi-fluid models for polydisperse evaporating sprays. In Multiphase Reacting Flows: Modelling and Simulation, pp. 79123. Springer.Google Scholar
Matas, J.-P., Morris, J. F. & Guazzelli, E. 2003 Transition to turbulence in particulate pipe flow. Phys. Rev. Lett. 90, 014501.Google Scholar
Maxey, M. 1987 The motion of small spherical particles in a cellular flow field. Phys. Fluids 30 (7), 19151928.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.Google Scholar
Michael, D. 1964 The stability of plane poiseuille flow of a dusty gas. J. Fluid Mech. 18 (1), 1932.Google Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Richter, D. H. 2015 Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow. Phys. Fluids 27 (6), 063304.Google Scholar
Richter, D. H. & Sullivan, P. P. 2013 Momentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids 25 (5), 053304.Google Scholar
Richter, D. H. & Sullivan, P. P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26 (10), 103304.Google Scholar
Rudyak, V. Y., Isakov, E. & Bord, E. 1998 Instability of plane Couette flow of two-phase liquids. Tech. Phys. Lett. 24 (3), 199200.Google Scholar
Rudyak, V. Y., Isakov, E. B. & Bord, E. G. 1997 Hydrodynamic stability of the Poiseuille flow of dispersed fluid. J. Aero. Sci. 28 (1), 5366.Google Scholar
Saffman, P. 1962 On the stability of laminar flow of a dusty gas. J. Fluid Mech. 13 (1), 120128.Google Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.Google Scholar
Schiller, V. 1933 Ber die grundlegenden berechnungen bei der schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318321.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Sendstad, O. & Moin, P.1992 The near-wall mechanics of three-dimensional boundary layers. Report tf-57. Thermoscience Division, Department of Mechanical Engineering.Google Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.Google Scholar
Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2 (7), 11911203.Google Scholar
Stone, P. A., Roy, A., Larson, R. G., Waleffe, F. & Graham, M. D. 2004 Polymer drag reduction in exact coherent structures of plane shear flow. Phys. Fluids 16 (9), 34703482.Google Scholar
Sweet, J., Richter, D. H. & Thain, D. 2018 GPU acceleration of Eulerian–Lagrangian particle-laden turbulent flow simulations. Intl J. Multiphase Flow 99, 437445.Google Scholar
Tanaka, T. & Eaton, J. K. 2008 Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys. Rev. Lett. 101 (11), 114502.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.Google Scholar
Wang, G., Abbas, M. & Climent, E. 2017 Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow. Phys. Rev. Fluids 2 (8), 084302.Google Scholar
Wang, G., Abbas, M. & Climent, E. 2018 Modulation of the regeneration cycle by neutrally buoyant finite-size particles. J. Fluid Mech. 852, 257282.Google Scholar
Yu, W., Vinkovic, I. & Buffat, M. 2016 Finite-size particles in turbulent channel flow: quadrant analysis and acceleration statistics. J. Turbul. 17 (11), 10481071.Google Scholar
Zhao, L., Andersson, H. I. & Gillissen, J. J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.Google Scholar