Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-21T17:47:13.914Z Has data issue: false hasContentIssue false

A mechanism for oscillatory instability in viscoelastic cross-slot flow

Published online by Cambridge University Press:  10 March 2009

LI XI
Affiliation:
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1691, USA
MICHAEL D. GRAHAM*
Affiliation:
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1691, USA
*
Email address for correspondence: [email protected]

Abstract

Interior stagnation-point flows of viscoelastic liquids arise in a wide variety of applications including extensional viscometry, polymer processing and microfluidics. Experimentally, these flows have long been known to exhibit instabilities, but the mechanisms underlying them have not previously been elucidated. We computationally demonstrate the existence of a supercritical oscillatory instability of low-Reynolds-number viscoelastic flow in a two-dimensional cross-slot geometry. The fluctuations are closely associated with the ‘birefringent strand’ of highly stretched polymer chains associated with the outflow from the stagnation point at high Weissenberg number. Additionally, we describe the mechanism of instability, which arises from the coupling of flow with extensional stresses and their steep gradients in the stagnation-point region.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arratia, P. E., Thomas, C. C., Diario, J. & Gollub, J. P. 2006 Elastic instabilities of polymer solutions in cross-channel flow. Phys. Rev. Lett. 96, 144502.CrossRefGoogle ScholarPubMed
Baaijens, F. P. T. 1998 Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newtonian Fluid Mech. 79, 361385.CrossRefGoogle Scholar
Baaijens, F. P. T., Selen, S. H. A., Baaijens, H. P. W., Peters, G. W. M. & Meijer, H. E. H. 1997 Viscoelastic flow past a confined cylinder of a low density polyethylene melt. J. Non-Newtonian Fluid Mech. 68, 173203.CrossRefGoogle Scholar
Bird, R. B., Curtis, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, 2nd edn, vol. 2. Wiley Interscience.Google Scholar
Bisgaard, C. 1983 Velocity fields around spheres and bubbles investigated by laser-Doppler anemometry. J. Non-Newtonian Fluid Mech. 12, 283302.CrossRefGoogle Scholar
Bisgaard, C. & Hassager, O. 1982 An experimental investigation of velocity fields around spheres and bubbles moving in non-Newtonian fluids. Rheol. Acta. 21, 537539.CrossRefGoogle Scholar
Broadbent, J. M., Pountney, D. C. & Walters, K. 1978 Experimental and theoretical aspects of the two-roll mill problem. J. Non-Newtonian Fluid Mech. 3, 359378.CrossRefGoogle Scholar
Brooks, A. N. & Hughes, T. J. R. 1982 Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Math. Appl. Mech. Eng. 32, 199259.CrossRefGoogle Scholar
Chow, A., Keller, A., Müller, A. J. & Odell, J. A. 1988 Entanglements in polymer solutions under elongational flow: a combined study of chain stretching, flow velocimetry, and elongational viscosity. Macromolecules 21, 250256.CrossRefGoogle Scholar
Graham, M. D. 1998 Effect of axial flow on viscoelastic Taylor–Couette instability. J. Fluid Mech. 360, 341374.CrossRefGoogle Scholar
Graham, M. D. 2003 Interfacial hoop stress and instability of viscoelastic free surface flows. Phys. Fluid 15, 17021710.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 5355.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2001 Efficient mixing at low Reynolds numbers using polymer additives. Nature 410, 905908.CrossRefGoogle ScholarPubMed
Groisman, A. & Quake, S. R. 2004 A microfluidic rectifier: anisotropic flow resistance at low Reynolds number. Phys. Rev. Lett. 92, 094501.CrossRefGoogle Scholar
Groisman, A., Enzelberger, M. & Quake, S. R. 2003 Microfluidic memory and control devices. Science 300, 955958.CrossRefGoogle ScholarPubMed
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.CrossRefGoogle Scholar
Harlen, O. G. 2002 The negative wake behind a sphere sedimenting through a viscoelastic fluid. J. Non-Newtonian Fluid Mech. 108, 411430.CrossRefGoogle Scholar
Harlen, O. G., Rallison, J. M. & Chilcott, M. D. 1990 High-Deborah-number flows of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 34, 319349.CrossRefGoogle Scholar
Harris, O. J. & Rallison, J. M. 1993 Start-up of a strongly extensional flow of a dilute polymer solution. J. Non-Newtonian Fluid Mech. 50, 89124.CrossRefGoogle Scholar
Harris, O. J. & Rallison, J. M. 1994 Instabilities of a stagnation point flow of a dilute polymer solution. J. Non-Newtonian Fluid Mech. 55, 5990.CrossRefGoogle Scholar
Hassager, O. 1979 Negative wake behind bubbles in non-Newtonian liquids. Nature 279, 402403.CrossRefGoogle ScholarPubMed
Joo, Y. L. & Shaqfeh, E. S. G. 1994 Observations of purely elastic instabilities in Taylor–Dean flow of a Boger fluid. J. Fluid Mech. 262, 2773.CrossRefGoogle Scholar
Larson, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta. 31, 213263.CrossRefGoogle Scholar
Larson, R. G., Muller, S. J. & Shaqfeh, E. S. G. 1990 A purely elastic instability in Taylor–Couette flow. J. Fluid Mech. 218, 573600.CrossRefGoogle Scholar
McKinley, G. H., Armstrong, R. C. & Brown, R. A. 1993 The wake instability in viscoelastic flow past confined circular cylinders. Phil. Trans. R. Soc. Lond. A 344, 265304.Google Scholar
Magda, J. J. & Larson, R. G. 1988 A transition occurring in ideal elastic liquids during shear flow. J. Non-Newtonian Fluid Mech. 30, 119.CrossRefGoogle Scholar
Müller, A. J., Odell, J. A. & Keller, A. 1988 Elongational flow and rheology of monodisperse polymers in solution. J. Non-Newtonian Fluid Mech. 30, 99118.CrossRefGoogle Scholar
Muller, S. J., Shaqfeh, E. S. G. & Larson, R. G. 1989 A purely elastic transition in Taylor–Couette flow. Rheol. Acta. 28, 499503.CrossRefGoogle Scholar
Ng, R. C. Y. & Leal, L. G. 1993 Concentration effects on birefringence and flow modification of semidilute polymer solutions in extensional flows. J. Rheol. 37, 443468.CrossRefGoogle Scholar
Pakdel, P. & McKinley, G. H. 1996 Elastic instability and curved streamlines. Phys. Rev. Lett. 77, 24592462.CrossRefGoogle ScholarPubMed
Poole, R. J., Alves, M. A. & Oliveira, P. J. 2007 Purely elastic flow asymmetries. Phys. Rev. Lett. 99, 164503.CrossRefGoogle ScholarPubMed
Remmelgas, J., Singh, P. & Leal, L. G. 1999 Computational studies of nonlinear elastic dumbbell models of Boger fluids in a cross-slot flow. J. Non-Newtonian Fluid Mech. 88, 3161.CrossRefGoogle Scholar
Renardy, M. 2006 A comment on smoothness of viscoelastic stresses. J. Non-Newtonian Fluid Mech. 138, 204205.CrossRefGoogle Scholar
Shaqfeh, E. S. G. 1996 Purely elastic instabilities in viscometric flow. Annu. Rev. Fluid. Mech. 28, 129185.CrossRefGoogle Scholar
Spiegelberg, S. H. & McKinley, G. H. 1996 Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. J. Non-Newtonian Fluid Mech. 67, 4976.CrossRefGoogle Scholar
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at nanoliter scale. Rev. Mod. Phys. 77, 9771026.CrossRefGoogle Scholar
Thomases, B. & Shelley, M. 2007 Emergence of singular structures in Oldroyd-B fluids. Phys. Fluid 19, 103103.CrossRefGoogle Scholar