Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:07:47.224Z Has data issue: false hasContentIssue false

Jet and progeny formation in the Rayleigh breakup of a charged viscous drop

Published online by Cambridge University Press:  13 December 2019

Neha Gawande
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
Y. S. Mayya
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
Rochish Thaokar*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
*
Email address for correspondence: [email protected]

Abstract

Past experimental studies have indicated that the Rayleigh fission of a charged drop occurs via the formation of a jet followed by emission of progeny droplets. In order to understand this process, we model the evolution of a drop using an axisymmetric boundary element method in the viscous limit. In this work, the electrostatic model of a charged viscous liquid drop is modified by including surface charge dynamics. This model accounts for the finite charge relaxation time scales over which the drop surface is charged as well as the convection of charges by the interfacial flow. It is observed that, as the drop deforms with time, the generally applied assumption of an equipotential surface becomes invalid near the conical ends that experience singularly fast dynamics and the associated surface charge dynamics gives rise to tangential electric stresses. These tangential electric stresses exert an axial momentum on the fluid and are responsible for the formation of a jet and progeny droplets. Further, the progeny droplets are found to follow an inverse power-law scaling with the conductivity of the liquid and the smaller sized progenies carry a charge close to its Rayleigh limit.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. A. & Latham, J. 1967 The instability of evaporating charged drops. J. Fluid Mech. 30 (4), 663670.CrossRefGoogle Scholar
Bailey, A. G. 1974 Energy minimization and charge-to-mass relationships of electrohydrodynamic sprayed liquid droplets. Phys. Fluids 17, 852853.CrossRefGoogle Scholar
Basaran, O. A., Patzek, T. W., Benner, R. E. Jr & Scriven, L. E. 1995 Nonlinear oscillations and breakup of conducting, inviscid drops in an externally applied electric field. Indust. Engng Chem. Res. 34 (10), 34543465.CrossRefGoogle Scholar
Basaran, O. A. & Scriven, L. E. 1989 Axisymmetric shapes and stability of isolated charged drops. Phys. Fluids A 1 (5), 795798.CrossRefGoogle Scholar
Betelú, S. I., Fontelos, M. A., Kindelán, U. & Vantzos, O. 2006 Singularities on charged viscous droplets. Phys. Fluids 18 (5), 051706.CrossRefGoogle Scholar
Burton, J. C. & Taborek, P. 2011 Simulations of coulombic fission of charged inviscid drops. Phys. Rev. Lett. 106 (14), 144501.CrossRefGoogle ScholarPubMed
Chen, D.-R., Pui, D. Y. H. & Kaufman, S. L. 1995 Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. J. Aero. Sci. 26 (6), 963977.CrossRefGoogle Scholar
Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature 4 (2), 149154.Google Scholar
Collins, R. T., Sambath, K., Harris, M. T. & Basaran, O. A. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110 (13), 49054910.CrossRefGoogle ScholarPubMed
Das, D. & Saintillan, D. 2017 A nonlinear small-deformation theory for transient droplet electrohydrodynamics. J. Fluid Mech. 810, 225253.CrossRefGoogle Scholar
Deshmukh, S. D. & Thaokar, R. M. 2012 Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field. Phys. Fluids 24 (3), 032105.CrossRefGoogle Scholar
Deshmukh, S. D. & Thaokar, R. M. 2013 Deformation and breakup of a leaky dielectric drop in a quadrupole electric field. J. Fluid Mech. 731, 713733.CrossRefGoogle Scholar
Doyle, A., Moffett, D. R. & Vonnegut, B. 1964 Behavior of evaporating electrically charged droplets. J. Colloid Sci. 19 (2), 136143.CrossRefGoogle Scholar
Dubash, N. & Mestel, A. J. 2007 Breakup behavior of a conducting drop suspended in a viscous fluid subject to an electric field. Phys. Fluids 19 (7), 072101.Google Scholar
Duft, D., Achtzehn, T., Müller, R., Huber, B. A. & Leisner, T. 2003 Coulomb fission: Rayleigh jets from levitated microdroplets. Nature 421 (6919), 128.CrossRefGoogle ScholarPubMed
Elghazaly, H. M. A. & Castle, G. S. P. 1987 Analysis of the multisibling instability of charged liquid drops. IEEE Trans. Ind. Applics 23 (1), 108113.CrossRefGoogle Scholar
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455 (1986), 22452269.CrossRefGoogle Scholar
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. 1989 Electrospray ionization for mass spectrometry of large biomolecules. Science 246 (4926), 6471.CrossRefGoogle ScholarPubMed
Ganan-Calvo, A. M. 2004 On the general scaling theory for electrospraying. J. Fluid Mech. 507, 203212.CrossRefGoogle Scholar
Ganán-Calvo, A. M., López-Herrera, J. M., Herrada, M. A., Ramos, A. & Montanero, J. M. 2018 Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aero. Sci. 125, 3256.CrossRefGoogle Scholar
Gañán-Calvo, A. M., López-Herrera, J. M., Rebollo-Muñoz, N. & Montanero, J. M. 2016 The onset of electrospray: the universal scaling laws of the first ejection. Sci. Rep. 6, 32357.CrossRefGoogle ScholarPubMed
Garzon, M., Gray, L. J. & Sethian, J. A. 2014 Numerical simulations of electrostatically driven jets from nonviscous droplets. Phys. Rev. E 89 (3), 033011.Google ScholarPubMed
Gawande, N., Mayya, Y. S. & Thaokar, R. 2017 Numerical study of Rayleigh fission of a charged viscous liquid drop. Phys. Rev. Fluids 2 (11), 113603.CrossRefGoogle Scholar
Giglio, E., Gervais, B., Rangama, J., Manil, B., Huber, B. A., Duft, D., Müller, R., Leisner, T. & Guet, C. 2008 Shape deformations of surface-charged microdroplets. Phys. Rev. E 77, 036319–036326.Google ScholarPubMed
Herrada, M. A., López-Herrera, J. M., Gañán-Calvo, A. M., Vega, E. J., Montanero, J. M. & Popinet, S. 2012 Numerical simulation of electrospray in the cone-jet mode. Phys. Rev. E 86 (2), 026305.Google ScholarPubMed
Karyappa, R. B., Deshmukh, S. D. & Thaokar, R. M. 2014 Breakup of a conducting drop in a uniform electric field. J. Fluid Mech. 754, 550589.CrossRefGoogle Scholar
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.CrossRefGoogle Scholar
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.CrossRefGoogle Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.CrossRefGoogle Scholar
Nganguia, H., Young, Y.-N., Vlahovska, P. M., Blawzdziewicz, J., Zhang, J. & Lin, H. 2013 Equilibrium electro-deformation of a surfactant-laden viscous drop. Phys. Fluids 25 (9), 092106.CrossRefGoogle Scholar
Pawar, Y. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8 (7), 17381751.CrossRefGoogle Scholar
Pfeifer, R. J. & Hendricks, C. D. 1967 Charge-to-mass relationships for electrohydrodynamically sprayed liquid droplets. Phys. Fluids 10 (10), 21492154.CrossRefGoogle Scholar
Pillai, R., Berry, J. D., Harvie, D. J. E. & Davidson, M. R. 2016 Electrokinetics of isolated electrified drops. Soft Matt. 12 (14), 33103325.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Rayleigh, Lord 1882 On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 14 (87), 184186.CrossRefGoogle Scholar
Richardson, C. B., Pigg, A. L. & Hightower, R. L. 1989 On the stability limit of charged droplets. Proc. R. Soc. Lond. A 422, 319328.CrossRefGoogle Scholar
Rosell-Llompart, J. & De La Mora, J. F. 1994 Generation of monodisperse droplets 0.3 to 4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids. J. Aero. Sci. 25 (6), 10931119.CrossRefGoogle Scholar
Roth, D. G. & Kelly, A. J. 1983 Analysis of the disruption of evaporating charged droplets. IEEE Trans. Ind. Applics 19 (5), 771775.CrossRefGoogle Scholar
Roulleau, M. & Desbois, M. 1972 Study of evaporation and instability of charged water droplets. J. Atmos. Sci. 29 (3), 565569.2.0.CO;2>CrossRefGoogle Scholar
Ryce, S. A. & Patriarche, D. A. 1965 Energy considerations in the electrostatic dispersion of liquids. Can. J. Phys. 43 (12), 21922199.CrossRefGoogle Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.CrossRefGoogle Scholar
Sengupta, R., Walker, L. M. & Khair, A. S. 2017 The role of surface charge convection in the electrohydrodynamics and breakup of prolate drops. J. Fluid Mech. 833, 2953.CrossRefGoogle Scholar
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.CrossRefGoogle Scholar
Singh, M., Gawande, N., Mayya, Y. S. & Thaokar, R.2019a Subcritical asymmetric Rayleigh breakup of a charged drop in an AC quadrupole trap. Nat. Sci. Rep. (submitted) arXiv:1907.02294.Google Scholar
Singh, M., Gawande, N., Mayya, Y. S. & Thaokar, R. M. 2019b The effect of quadrupolar trap potential on the Rayleigh instability and breakup of a levitated charged droplet. Langmuir 35 (48), 1575915768.CrossRefGoogle Scholar
Singh, S., Khan, A., Koli, A., Sapra, B. K. & Mayya, Y. S. 2016 Electrohydrodynamic atomization (EHDA) of high-conductivity pure solvent. Part. Sci. Technol. 34 (5), 608615.CrossRefGoogle Scholar
Stone, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.CrossRefGoogle Scholar
Supeene, G., Koch, C. R. & Bhattacharjee, S. 2008 Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318 (2), 463476.CrossRefGoogle Scholar
Taflin, D. C., Ward, T. L. & Davis, E. J. 1989 Electrified droplet fission and the Rayleigh limit. Langmuir 5 (2), 376384.CrossRefGoogle Scholar
Taylor, G. I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 291 (1425), 159166.Google Scholar
Teigen, K. E. & Munkejord, S. T. 2010 Influence of surfactant on drop deformation in an electric field. Phys. Fluids 22 (11), 112104.CrossRefGoogle Scholar
Thaokar, R. M. & Deshmukh, S. D. 2010 Rayleigh instability of charged drops and vesicles in the presence of counterions. Phys. Fluids 22 (3), 034107.CrossRefGoogle Scholar
Tsamopoulos, J. A., Akylas, T. R. & Brown, R. A. 1985 Dynamics of charged drop break-up. Proc. R. Soc. Lond. A 401 (1820), 6788.CrossRefGoogle Scholar