Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T21:53:58.920Z Has data issue: false hasContentIssue false

Impact of ultra-viscous drops: air-film gliding and extreme wetting

Published online by Cambridge University Press:  23 January 2017

K. Langley
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
E. Q. Li
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
S. T. Thoroddsen*
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
*
Email address for correspondence: [email protected]

Abstract

A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary–viscous balance. The spreading velocity of the wetting spots is ${\sim}0.4~\text{m}~\text{s}^{-1}$ independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, M. K. & Harris, P. D. 1995 Damping and gas viscosity measurements using a microstructure. Sensors Actuators A 49, 103108.Google Scholar
Baldessari, F., Homsy, G. M. & Leal, L. G. 2007 Linear stability of a draining film squeezed between two approaching droplets. J. Colloid Interface Sci. 307, 188202.Google Scholar
Blake, T. D., Fernandez-Toledano, J.-C., Doyen, G. & De Coninck, J. 2015 Forced wetting and hydrodynamic assist. Phys. Fluids 27, 112101.Google Scholar
Bouwhuis, W., van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.Google Scholar
Carlson, A., Bellani, G & Amberg, G. 2012 Universality in dynamic wetting dominated by contact-line friction. Phys. Rev. E 85, 045302(R).Google Scholar
Chan, D. Y. C., Klaseboer, E. & Manica, R. 2011 Film drainage and coalescence between deformable drops and bubbles. Soft Matt. 7, 22352264.Google Scholar
Chan, T. S., Srivastava, A., Marchand, A., Andreotti, B., Biferale, L., Toschi, F. & Snoeijer, J. H. 2013 Hydrodynamics of air entrainment by moving contact lines. Phys. Fluids 25, 074105.Google Scholar
Crooks, J., Marsh, B., Turchetta, R., Taylor, K., Chan, W., Lahav, A. & Fenigstein, A. 2013 Kirana: a solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proc. SPIE 8659, 865903.Google Scholar
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.Google Scholar
Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 82, 036302.Google Scholar
Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.CrossRefGoogle Scholar
Eddi, A., Winkels, K. G. & Snoeijer, J. H. 2013 Short time dynamics of viscous drop spreading. Phys. Fluids 25, 013102.Google Scholar
Frostad, J. M., Walter, J. & Leal, L. G. 2013 A scaling relation for the capillary-pressure driven drainage of thin films. Phys. Fluids 25, 052108.Google Scholar
Hicks, P. D., Ermanyuk, E. V., Gavrilov, N. V. & Purvis, R. 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.CrossRefGoogle Scholar
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.Google Scholar
Hicks, P. D. & Purvis, R. 2013 Liquid–solid impacts with compressible gas cushioning. J. Fluid Mech. 735, 120149.Google Scholar
Jennings, S. G. 1988 The mean free path in air. J. Aero. Sci. 19, 159166.Google Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.Google Scholar
Kaur, S. & Leal, L. G. 2009 Three-dimensional stability of a thin film between two approaching drops. Phys. Fluids 21, 072101.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D. Y. C. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113, 194501.Google Scholar
Kolinski, J. M., Mahadevan, L. & Rubinstein, S. M. 2014 Drops can bounce from perfectly hydrophilic surfaces. Eur. Phys. Lett. 108, 24001.CrossRefGoogle Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.Google Scholar
Korobkin, A. A., Ellis, A. S. & Smith, F. T. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.Google Scholar
Lee, J. S., Weon, B. M., Je, J. H. & Fezzaa, K. 2012 How does an air film evolve into a bubble during drop impact? Phys. Rev. Lett. 109, 204501.CrossRefGoogle ScholarPubMed
Li, E. Q. & Thoroddsen, S. T. 2015 Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface. J. Fluid Mech. 780, 636648.CrossRefGoogle Scholar
Li, E. Q., Vakarelski, I. U. & Thoroddsen, S. T. 2015 Probing the nanoscale: the first contact of an impacting drop. J. Fluid Mech. 785, R2.Google Scholar
Liu, Y., Tan, P. & Xu, L. 2013 Compressible air entrapment in high-speed drop impacts on solid surfaces. J. Fluid Mech. 716, R9.Google Scholar
Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.Google Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.Google Scholar
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.Google Scholar
Mansoor, M. M., Marston, J. O., Uddin, J., Christopher, G., Zhang, Z. & Thoroddsen, S. T. 2016 Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface. J. Fluid Mech. 796, 473515.CrossRefGoogle Scholar
Marchand, A., Chan, T. S., Snoeijer, J. H. & Andreotti, B. 2012 Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108, 204501.Google Scholar
Palacios, J., Hernández, J., Gómez, P., Zanzi, C. & López, J. 2012 On the impact of viscous drops onto dry smooth surfaces. Exp. Fluids 52, 14491463.Google Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical, impact speed for drop splashing. Phys. Rev. Lett. 113, 024507.Google Scholar
de Ruiter, J., Lagraauw, R., van den Ende, D & Mugele, F. 2015 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11, 4853.CrossRefGoogle Scholar
de Ruiter, J., Mugele, F. & van den Ende, D. 2015 Air cushioning in droplet impact. II: Experimental characterization of the air film evolution. Phys. Fluids 27, 012104.Google Scholar
de Ruiter, J., Oh, J. M., van den Ende, D & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.Google Scholar
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Sprittles, J. E. & Shikhmurzaev, Y. D. 2014a The coalesence of liquid drops in a viscous fluid: interface formation model. J. Fluid Mech. 751, 480499.Google Scholar
Sprittles, J. E. & Shikhmurzaev, Y. D. 2014b A parametric study of the coalescence of liquid drops in a viscous gas. J. Fluid Mech. 753, 279306.CrossRefGoogle Scholar
Stevens, C. S., Latka, A. & Nagel, S. N. 2014 Comparison of splashing in high- and low-viscosity liquids. Phys. Rev. E 89, 063006.Google Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air-bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.Google Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2010 Bubble entrapment through topological change. Phys. Fluids 22, 051701.Google Scholar
Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2010 Micro-bubble morphologies following drop impacts onto a pool surface. J. Fluid Mech. 708, 469479.Google Scholar
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.Google Scholar

Langley et al. supplementary movie

Video of reflective interferometry taken from below an impacting drop (𝝂 = 10 cSt; Rb= 1.90 mm; V = 1.20 m/s). The video was recorded at 500 kfps and is played back at 10 fps. The horizontal extent is 0.82 mm.

Download Langley et al. supplementary movie(Video)
Video 785.3 KB

Langley et al. supplementary movie

Video of reflective interferometry taken from below an impacting drop (𝝂 = 1,000 cSt; Rb= 1.88 mm; V = 1.09 m/s). The video was recorded at 500 kfps and is played back at 10 fps. The horizontal extent is 1.76 mm.

Download Langley et al. supplementary movie(Video)
Video 4.3 MB

Langley et al. supplementary movie

Video of reflective interferometry taken from below an impacting drop (𝝂 = 100 kcSt; Rb= 1.50 mm; V = 2.96 m/s). The video was recorded at 500 kfps and is played back at 10 fps. The horizontal extent is 1.76 mm.

Download Langley et al. supplementary movie(Video)
Video 3.1 MB

Langley et al. supplementary movie

Video of reflective interferometry taken from below an impacting drop (𝝂 = 1 McSt; Rb= 1.55 mm; V = 2.10 m/s). The video was recorded at 100 kfps and is played back at 10 fps. The horizontal extent is 1.38 mm.

Download Langley et al. supplementary movie(Video)
Video 5.2 MB