Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T09:59:26.227Z Has data issue: false hasContentIssue false

Hypersonic shock impingement studies on a flat plate: flow separation of laminar boundary layers

Published online by Cambridge University Press:  04 November 2022

Eric Won Keun Chang*
Affiliation:
Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
Wilson Y.K. Chan
Affiliation:
Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
Timothy J. McIntyre
Affiliation:
Centre for Hypersonics, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
Ananthanarayanan Veeraragavan
Affiliation:
Centre for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
*
Email address for correspondence: [email protected]

Abstract

Interactions between shock waves and boundary layers produce flow separations and augmented pressure/thermal loads in hypersonic flight. This study provides details of Mach 7 impinging-shock-flat-plate experiments conducted in the T4 Stalker Tube. Measurements were taken at flow conditions of Mach 7.0 (2.44 MJ kg$^{-1}$) and Mach 7.7 (2.88 MJ kg$^{-1}$) flight enthalpies with a range of freestream unit Reynolds numbers from $1.43 \times 10^{6}$ m$^{-1}$ to $5.01 \times 10^{6}$ m$^{-1}$. A shock generator at $12^{\circ }$ or $16^{\circ }$ to the freestream created an oblique shock which impinged on a boundary layer over a flat plate to induce flow separation. The flow field was examined using simultaneous measurements of wall static pressure, heat transfer and schlieren visualisation. Measured heat transfer along the flat plate without the shock impingement indicated that the boundary layer remained laminar for all flow conditions. The shock impingement flow field was successfully established within the facility test duration. The onset of separation was observed by a rise in wall pressure and a decrease in heat transfer at the location corresponding to the stem of the separation shock. Downstream of this initial rise, an increased pressure and higher heating loads were observed. The heat-transfer levels also indicated an immediate boundary layer transition due to the shock impingement. The separation data of the present work showed good agreement with our previous work on shock impingement on heated walls (Chang et al., J. Fluid Mech., vol. 908, 2021, pp. 1–13). A comparison with the previous scaling indicated that the separation also relates to the pressure ratio and the wall temperature parameter.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Back, L.H. & Cuffel, R.F. 1970 Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves. AIAA J. 8 (10), 18711873.CrossRefGoogle Scholar
Ball, K.O.W. 1971 Flap span effects on boundary-layer separation. AIAA J. 9 (10), 20802081.CrossRefGoogle Scholar
Benay, R., Chanetz, B., Mangin, B. & Vandomme, L. 2006 Shock wave/transitional boundary-layer interactions in hypersonic flow. AIAA J. 44 (6), 12431254.CrossRefGoogle Scholar
Bleilebens, M. & Olivier, H. 2006 On the influence of elevated surface temperatures on hypersonic shock wave/boundary layer interaction at a heated ramp model. Shock Waves 15 (5), 301312.CrossRefGoogle Scholar
Boyce, R.R., Takahashi, M. & Stalker, R.J. 2005 Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel. Shock Waves 14 (5–6), 371378.CrossRefGoogle Scholar
Brown, J.L. 2013 Hypersonic shock wave impingement on turbulent boundary layers: computational analysis and uncertainty. J. Spacecr. Rockets 50 (1), 96123.CrossRefGoogle Scholar
Cebeci, T. & Bradshaw, P. 2012 Physical and Computational Aspects of Convective Heat Transfer. Springer-Verlag.Google Scholar
Chan, W.Y.K., Jacobs, P.A., Smart, M.K., Grieve, S., Craddock, C.S. & Doherty, L.J. 2018 a Aerodynamic design of nozzles with uniform outflow for hypervelocity ground-test facilities. J. Propul. Power 34 (6), 14671478.CrossRefGoogle Scholar
Chan, W.Y.K., Razzaqi, S.A., Turner, J.C., Suraweera, M.V. & Smart, M.K. 2018 b Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5. J. Propul. Power 34 (4), 844853.CrossRefGoogle Scholar
Chan, W.Y.K., Whitside, R.W., Smart, M.K., Gildfind, D.E., Jacobs, P.A. & Sopek, T. 2021 Nitrogen driver for low-enthalpy testing in free-piston-driven shock tunnels. Shock Waves 31, 541550.CrossRefGoogle Scholar
Chang, E.W.K., Chan, W.Y.K., Hopkins, K.J., McIntyre, T.J. & Veeraragavan, A. 2020 Electrically-heated flat plate testing in a free-piston driven shock tunnel. Aerosp. Sci. Technol. 102, 111.Google Scholar
Chang, E.W.K., Chan, W.Y.K., McIntyre, T.J. & Veeraragavan, A. 2021 Hypersonic shock impingement on a heated flat plate at Mach 7 flight enthalpy. J. Fluid Mech. 908, 113.CrossRefGoogle Scholar
Chang, W.K., Park, G., Jin, Y. & Byun, J. 2016 Shock impinging effect in ethylene flameholding. J. Propul. Power 32 (5), 12301239.CrossRefGoogle Scholar
Chang, E.W.K., Yang, S., Park, G. & Choi, H. 2018 Ethylene flame-holding in double ramp flows. Aerosp. Sci. Technol. 80, 413423.CrossRefGoogle Scholar
Chapman, D.R., Kuehn, D.M. & Larson, H.K. 1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. NACA-TR-1356.Google Scholar
Clemens, N.T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.CrossRefGoogle Scholar
Curran, D., Wheatley, V. & Smart, M.K. 2019 Investigation of combustion mode control in a Mach 8 shape-transitioning scramjet. AIAA J. 57 (7), 29772988.CrossRefGoogle Scholar
Currao, G.M.D., Choudhury, R., Gai, S.L., Neely, A.J. & Buttsworth, D.R. 2020 Hypersonic transitional shock-wave-boundary-layer interaction on a flat plate. AIAA J. 58 (2), 814829.CrossRefGoogle Scholar
Davis, J.-P. & Sturtevant, B. 2000 Separation length in high-enthalpy shock/boundary-layer interaction. Phys. Fluids 12 (10), 26612687.CrossRefGoogle Scholar
Degrez, G., Boccadoro, C.H. & Wendt, J.F. 1987 The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study. J. Fluid Mech. 177, 247263.CrossRefGoogle Scholar
Dolling, D.S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Dupont, P., Haddad, C. & Debiève, J.-F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 599, 255277.CrossRefGoogle Scholar
Eckhert, E.R.G. 1955 Engineering relations for friction and heat transfer to surfaces in high velocity flow. J. Aeronaut. Sci. 22 (9), 585587.Google Scholar
Fu, L., Karp, M., Bose, S.T., Moin, P. & Urzay, J. 2018 Equilibrium wall-modeled LES of shock-induced aerodynamic heating in hypersonic boundary layers. In Center for Turbulence Research Annual Research Briefs 2018, pp. 171–181. Center for Turbulence Research.Google Scholar
Fu, L., Karp, M., Bose, S.T., Moin, P. & Urzay, J. 2019 Turbulence statistics in a high Mach number boundary layer downstream of an incident shock wave. In Center for Turbulence Research Annual Research Briefs 2019, pp. 41–54. Center for Turbulence Research.Google Scholar
Fu, L., Karp, M., Bose, S.T., Moin, P. & Urzay, J. 2021 Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. 909, 149.CrossRefGoogle Scholar
Gaitonde, D.V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.CrossRefGoogle Scholar
Gildfind, D.E., Morgan, R.G., Jacobs, P.A. & McGilvray, M. 2014 Production of high-Mach-number scramjet flow conditions in an expansion tube. AIAA J. 52 (1), 162177.CrossRefGoogle Scholar
Grossman, I.J. & Bruce, P.J.K. 2018 Confinement effects on regular-irregular transition in shock-wave-boundary-layer interactions. J. Fluid Mech. 853, 171204.CrossRefGoogle Scholar
Grossman, I.J. & Bruce, P.J.K. 2019 Sidewall gap effects on oblique shock-wave/boundary-layer interactions. AIAA J. 57 (6), 26492652.CrossRefGoogle Scholar
Gu, S. & Olivier, H. 2020 Capabilities and limitations of existing hypersonic facilities. Prog. Aerosp. Sci. 113, 127.CrossRefGoogle Scholar
Gupta, R. 1972 An analysis of the relaxation of laminar boundary layer on a flat plate after passage of an interface with application to expansion-tube flows. NASA Tech. Rep. TR-R-397.Google Scholar
Hakkinen, R.J., Greber, I., Trilling, L. & Abarbanel, S.S. 1959 The interaction of an oblique shock wave with a laminar boundary layer. NASA Tech. Memo. TM-2-18-59W.Google Scholar
Hankey, W.L. Jr. & Holden, M.S. 1975 Two-dimensional shock wave-boundary layer interactions in high speed flows. Tech. Rep. AGRAD-AG-203-0134. AGRAD.Google Scholar
Harvey, W.D. 1968 Experimental investigation of laminar-flow separation on a flat plate induced by deflected trailing-edge flap at Mach 19. NASA Tech. Rep. TN-D-4671.Google Scholar
Heiser, W.H. & Pratt, D.T. 1994 Hypersonic Airbreathing Propulsion. AIAA Education Series. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Holden, M.S. 1971 Establishment time of laminar separated flows. AIAA J. 9 (11), 22962298.CrossRefGoogle Scholar
Holden, M.S. & Moselle, J.R. 1970 Theoretical and experimental studies of the shock wave-boundary layer interaction on compression surfaces in hypersonic flow. Tech. Rep. ARL 70-0002. Cornell Aeronautical Laboratory.CrossRefGoogle Scholar
Holden, M.S., Wadhams, T.P., MacLean, M.G. & Dufrene, A.T. 2013 a Measurements in regions of shock wave/turbulent boundary layer interaction from Mach 3 to 10 for open and “blind” code evaluation/validation. Tech. Rep. AFRL-OSR-VA-TR-2013-0134. CUBRC.CrossRefGoogle Scholar
Holden, M.S., Wadhams, T.P., MacLean, M.G. & Dufrene, A.T. 2013 b Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for “blind” code validation studies. AIAA Paper 2013-2837. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Hopkins, K., Porat, H., McIntyre, T.J., Wheatley, V. & Veeraragavan, A. 2021 Measurements and analysis of hypersonic tripped boundary layer turbulence. Exp. Fluids 62 (164), 112.CrossRefGoogle Scholar
Hung, F.T. & Barnett, D.O. 1973 Shockwave-boundary layer interference heating analysis. AIAA Tech. Rep. 1973-237.CrossRefGoogle Scholar
Im, S. & Do, H. 2018 Unstart phenomena induced by flow choking in scramjet inlet-isolators. Prog. Aerosp. Sci. 97, 121.CrossRefGoogle Scholar
Jacobs, P.A., Gollan, R.J., Potter, D.F., Zander, F., Gildfind, D.E., Blyton, P., Chan, W.Y.K. & Doherty, L. 2014 Estimation of high-enthalpy flow conditions for simple shock and expansion processes using the ESTCj program and library. Tech. Rep. Mechanical Engineering Report 2011/02. Centre for Hypersonics, The University of Queensland.Google Scholar
Jacobs, P.A., Rogers, R.C., Weidner, E.H. & Bittner, R.D. 1992 Flow establishment in a generic scramjet combustor. J. Propul. Power 8 (4), 890899.CrossRefGoogle Scholar
James, C.M., Cullen, T.G., Wei, H., Lewis, S.W., Gu, S., Morgan, R.G. & McIntyre, T.J. 2018 Improved test time evaluation in an expansion tube. Exp. Fluids 59 (87), 121.CrossRefGoogle Scholar
Jaunet, V., Debiève, J.-F. & Dupont, P. 2014 Length scales and time scales of a heated shock-wave/boundary-layer interaction. AIAA J. 52 (11), 2524–1741.CrossRefGoogle Scholar
Katzer, E. 1989 On the lengthscales of laminar shock/boundary-layer interaction. J. Fluid Mech. 206, 477496.CrossRefGoogle Scholar
Knisely, A. & Austin, J.M. 2016 Geometry and test-time effects on hypervelocity shock-boundary layer interaction. AIAA Paper 2016-1979.CrossRefGoogle Scholar
Landsberg, W.O., Vanyai, T., McIntyre, T.J. & Veeraragavan, A. 2020 a Dual/scram-mode combustion limits of ethylene and surrogate endothermically-cracked hydrocarbon fuels at Mach 8 equivalent high-enthalpy conditions. Proc. Combust. Inst. 38 (3), 38353843.CrossRefGoogle Scholar
Landsberg, W.O., Vanyai, T., McIntyre, T.J. & Veeraragavan, A. 2020 b Experimental scramjet combustion modes of hydrocarbon mixtures at Mach 8 flight conditions. AIAA J. 58 (12), 51175122.CrossRefGoogle Scholar
Landsberg, W.O., Wheatley, V., Smart, M.K. & Veeraragavan, A. 2018 Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet. AIAA J. 56 (10), 38023807.CrossRefGoogle Scholar
Laurence, S.J., Karl, S., Schramm, J.M. & Hannemann, K. 2013 Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85120.CrossRefGoogle Scholar
Lusher, D.J. & Sandham, N.D. 2020 The effect of flow confinement on laminar shock-wave/boundary-layer interactions. J. Fluid Mech. 897, A18.CrossRefGoogle Scholar
Mallinson, S.G., Gai, S.L. & Mudford, N.R. 1996 Upstream influence and peak heating in hypervelocity shock wave/boundary-layer interaction. J. Propul. Power 12 (5), 984990.CrossRefGoogle Scholar
Mallinson, S.G., Gai, S.L. & Mudford, N.R. 1997 Establishment of steady separated flow over a compression–corner in a free–piston shock tunnel. Shock Waves 7 (4), 249253.CrossRefGoogle Scholar
Mee, D.J. 1993 Uncertainty analysis of conditions in the test section of the T4 shock tunnel. Tech. Rep. Mechanical Engineering Report 1993/04. Centre for Hypersonics, University of Queensland.Google Scholar
Mee, D.J. 2002 Boundary-layer transition measurements in hypervelocity flows in a shock tunnel. AIAA J. 40 (8), 15421548.CrossRefGoogle Scholar
Rizzetta, D.P., Burggraf, O.R. & Jenson, R. 1978 Triple-deck solutions for viscous supersonic and hypersonic flow past corners. J. Fluid Mech. 89, 535552.CrossRefGoogle Scholar
Roghelina, A., Olivier, H., Egorov, I. & Chuvakhov, P. 2017 Experimental investigation of Görtlervortices in hypersonic ramp flows. Exp. Fluids 58 (139), 115.Google Scholar
Sandham, N.D., Schülein, E., Wagner, A., Willems, S. & Steelant, J. 2014 Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349382.CrossRefGoogle Scholar
Sasidharan, V. & Duvvuri, S. 2021 Large- and small-amplitude shock-wave oscillations over axisymmetric bodies in high-speed flow. J. Fluid Mech. 913, 112.CrossRefGoogle Scholar
Schülein, E. 2006 Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA J. 44 (8), 17321741.CrossRefGoogle Scholar
Schülein, E. 2014 Effects of laminar-turbulent transition on the shock-wave/boundary-layer interaction. AIAA Paper 2014-3332.CrossRefGoogle Scholar
Schultz, D.L. & Jones, T.V. 1973 Heat transfer measurements in short duration hypersonic facilities. Tech. Rep. 165. Advisory Group for Aerospace Research and Development.Google Scholar
Simeonides, G. & Hasse, W. 1995 Experimental and computational investigations of hypersonic flow about compression ramps. J. Fluid Mech. 283, 1742.CrossRefGoogle Scholar
Souverein, L.J., Bakker, P.G. & Dupont, P. 2013 A scaling analysis for turbulent shock-wave/boundary-layer interactions. J. Fluid Mech. 714, 505535.CrossRefGoogle Scholar
Sriram, R. & Jagadeesh, G. 2014 Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed. Aerosp. Sci. Technol. 36, 8793.Google Scholar
Sriram, R. & Jagadeesh, G. 2015 Correlation for length of impinging shock-induced large separation bubble at hypersonic speed. AIAA J. 53 (9), 27712776.CrossRefGoogle Scholar
Sriram, R., Srinath, L., Devaraj, M.K. & Jagadeesh, G. 2016 On the length scales of hypersonic shock-induced large separation bubbles near leading edges. J. Fluid Mech. 806, 304355.Google Scholar
Stalker, R.J., Paull, A., Mee, D.J., Morgan, R.G. & Jacobs, P.A. 2005 Scramjets and shock tunnels - the Queensland experience. Prog. Aerosp. Sci. 41 (6), 471513.CrossRefGoogle Scholar
Stillwell, W.H. 1965 X-15 Research Results: With a Selected Bibliography. National Aeronautics and Space Administration.Google Scholar
Swantek, A.B. & Austin, J.M. 2015 Flowfield establishment in hypervelocity shock-wave/boundary-layer interactions. AIAA J. 53 (2), 311320.CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.CrossRefGoogle Scholar
Vanyai, T., Landsberg, W.O., McIntyre, T.J. & Veeraragavan, A. 2021 OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor. Combust. Flame 226, 143155.CrossRefGoogle Scholar
Volpiani, P.S., Bernardini, M. & Larsson, J. 2020 Effects of a nonadiabatic wall on hypersonic shock/boundary-layer interactions. Phys. Rev. Fluids 5, 120.CrossRefGoogle Scholar
Ward, A.D.T. & Smart, M.K. 2021 Parametric study of the aftbody design of an airbreathing hypersonic accelerator. J. Spacecr. Rockets 58 (5), 13611373.CrossRefGoogle Scholar
Whalen, T.J., Schöneich, A.G., Laurence, S.J., Sullivan, B.T., Bodony, D.J., Freydin, M., Dowell, E.H. & Buck, G.M. 2020 Hypersonic fluid-structure interactions in compression corner shock-wave/boundary-layer interaction. AIAA J. 58 (9), 40904105.CrossRefGoogle Scholar
Willems, S., Gülhan, A. & Steelant, J. 2015 Experiments on the effect of laminar–turbulent transition on the SWBLI in H2K at Mach 6. Exp. Fluids 56 (49), 119.CrossRefGoogle Scholar
Wise, D.J. & Smart, M.K. 2014 Roughness-induced transition of hypervelocity boundary layers. J. Spacecr. Rockets 51 (3), 847854.CrossRefGoogle Scholar