Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T20:26:40.714Z Has data issue: false hasContentIssue false

Heat transfer mechanisms of a vapour bubble growing at a wall in saturated upward flow

Published online by Cambridge University Press:  20 April 2015

C. H. M. Baltis
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
C. W. M. van der Geld*
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

The aim of this study is to provide a better insight into the heat transfer mechanisms involved in single bubble growth in forced convection. In a set-up with vertical upflow of demineralized water under saturation conditions special bubble generators (BGs) were embedded at various positions in the plane wall. Power to a BG, local mean wall temperature and high-speed camera recordings from two viewing angles were measured synchronously. An accurate contour analysis is applied to reconstruct the instantaneous three-dimensional bubble volume. Interface topology changes of a vapour bubble growing at a plane wall have been found to be dictated by the rapid growth and by fluctuations in pressure, velocity and temperature in the approaching fluid flow. The camera images have shown a clear dry spot under the bubbles on the heater surface. A micro-layer under the bubble is experimentally shown to exist when the bubble pins to the wall surface and is therefore dependent on roughness and homogeneity of the wall. The ratio of heat extracted from the wall to the total heat required for evaporation was found to be around 30 % at most and to be independent of the bulk liquid flow rate and heat provided by the wall. When the bulk liquid is locally superheated this ratio was found to decrease to 20 %. Heat transfer to the bubble is also initially controlled by diffusion and is unaffected by the convection of the bulk liquid.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baltis, C. H. M. & Van der Geld, C. W. M. 2014 Experimental investigation of the thermal interactions of nucleation sites in flow boiling. Intl J. Heat Mass Transfer 78, 12081218.Google Scholar
Beck, J. V., Cole, K. D., Haji-Sheikh, A. & Litkouhi, B. 1992 Heat Conduction Using Green’s Functions. Hemisphere.CrossRefGoogle Scholar
Bonjour, J., Clausse, M. & Lallemand, M. 2000 Experimental study of the coalescence phenomenon during nucleate pool boiling. Exp. Therm. Fluid Sci. 20, 180187.CrossRefGoogle Scholar
Bostwick, J. B. & Steen, P. H. 2013 Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. J. Fluid Mech. 714, 312335.CrossRefGoogle Scholar
Caney, N., Gruss, J. A., Bertossi, R., Poncelet, O. & Marty, P.2014 Boiling enhancement using switchable polymer coatings. In Proceedings of the 101st Eurotherm Seminar, HEAT 2014, Krakow, Poland.Google Scholar
Canny, J. 1986 A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679698.Google Scholar
Celata, G. P., Colin, C., Colinet, P., Di Marco, P., Gambaryan-Roisman, T., Kabov, O., Kyriopoulos, O., Stephan, P., Tadrist, L. & Tropea, C. 2008 Bubbles, drops, films: transferring heat in space. Europhys. News 39 (4), 2325.CrossRefGoogle Scholar
Chen, J. C. 1966 Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Engng Chem. 5 (3), 322329.Google Scholar
Cooper, M. G. & Lloyd, A. J. P. 1969 The microlayer in nucleate pool boiling. Intl J. Heat Mass Transfer 12, 895913.Google Scholar
Demiray, F. & Kim, J. 2004 Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Intl J. Heat Mass Transfer 47, 32573268.Google Scholar
Engelberg-Forster, K. & Greif, R. 1959 Heat transfer to a boiling liquid – mechanism and correlations. Trans. ASME J. Heat Transfer 81, 4353.CrossRefGoogle Scholar
Forster, H. K. & Zuber, N. 1955 Dynamics of vapor bubbles and boiling heat transfer. Am. Inst. Chem. Engrs J. 1, 531535.CrossRefGoogle Scholar
Gerardi, C., Buongiorno, J., Hu, L. & McKrell, T.2009 Measurement of nucleation site density, bubble departure diameter and frequency in pool boiling of water using high-speed infrared and optical cameras. In ECI International Conference on Boiling Heat Transfer, Florianópolis, Brazil.Google Scholar
Gerardi, C., Buongiorno, J., Hu, L. & McKrell, T. 2010 Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. Intl J. Heat Mass Transfer 53, 41854192.CrossRefGoogle Scholar
Han, C. Y. & Griffith, P. 1965a The mechanism of heat transfer in nucleate pool boiling, part I: bubble initiation, growth and departure. Intl J. Heat Mass Transfer 8, 887904.Google Scholar
Han, C. Y. & Griffith, P. 1965b The mechanism of heat transfer in nucleate pool boiling, part II: the heat flux–temperature difference relation. Intl J. Heat Mass Transfer 8, 905914.Google Scholar
Hollingsworth, D. K., Witte, L. C. & Figueroa, M. 2009 Enhancement of heat transfer behind sliding bubbles. Trans. ASME J. Heat Transfer 131, 121005,1–9.Google Scholar
Horacek, B., Kiger, K. T. & Kim, J. 2005 Single nozzle spray cooling heat transfer mechanisms. Intl J. Heat Mass Transfer 48, 14251438.CrossRefGoogle Scholar
Jakob, M. & Linke, W. 1933 Der wärmeübergang von einer waagerechten platte an siedendes wasser. Forsch. Geb. Ing. A 4, 7581.CrossRefGoogle Scholar
Kandlikar, S. G. 2002 Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Therm. Fluid Sci. 26, 389407.Google Scholar
Kim, J. 2009 Review of nucleate pool boiling bubble heat transfer mechanisms. Intl J. Multiphase Flow 35, 10671076.Google Scholar
Kim, J., Oh, B. D. & Kim, M. H. 2006 Experimental study of pool temperature effects on nucleate pool boiling. Intl J. Multiphase Flow 32, 208231.Google Scholar
Kroes, J. P., Van der Geld, C. W. M. & Van Velthooven, E. 2009 Evaluation of four nucleate flow boiling models. Adv. Multiphase Flow Heat Transfer 1, 267283.Google Scholar
Le, H. P. 1998 Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 42, 4962.Google Scholar
Lee, H. C., Oh, B. D., Kim, M. H., Lee, J. Y. & Song, I. S. 2003 Partial nucleate boiling on the microscale heater maintaining constant wall temperature. J. Nucl. Sci. Technol. 40, 768774.CrossRefGoogle Scholar
Legendre, D., Borée, J. & Magnaudet, J. 1998 Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid. Phys. Fluids 10, 12561272.Google Scholar
Liao, J., Mei, R. & Klausner, J. F. 2004 The influence of the bulk liquid boundary layer on saturated nucleate boiling. Intl J. Heat Fluid Flow 25, 196208.Google Scholar
Lin, L. & Pisano, A. P. 1994 Thermal bubble powered microactuators. Microsyst. Technol. 1, 5158.CrossRefGoogle Scholar
Luikov, A. V. 1968 Analytical Heat Diffusion Theory. Academic.Google Scholar
Ma, H. 2008 Micro heat pipes. In Encyclopedia of Microfluidics and Nanofluidics, pp. 12451253. Springer.Google Scholar
MATLAB2014 version 8.3.0 (R2014a). The MathWorks Inc.Google Scholar
Maxwell, R. B., Gerhardt, A. L., Toner, M., Gray, M. L. & Schmidt, M. A. 2003 A microbubble-powered bioparticle actuator. J. Microelectromech. Syst. 12, 630640.Google Scholar
Mikic, B. B., Rohsenow, W. W. & Griffith, P. 1970 On bubble growth rates. Intl J. Heat Mass Transfer 13, 657666.Google Scholar
Moghaddam, S. & Kiger, K. 2009a Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions – I. Experimental investigation. Intl J. Heat Mass Transfer 52, 12841294.CrossRefGoogle Scholar
Moghaddam, S. & Kiger, K. 2009b Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions – II. Theoretical analysis. Intl J. Heat Mass Transfer 52, 12951303.CrossRefGoogle Scholar
Myers, J., Yerramilli, V. K., Hussey, S. W., Yee, G. F. & Kim, J. 2005 Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions. Intl J. Heat Mass Transfer 48, 24292442.Google Scholar
Papavasiliou, A. P., Liepmann, D. & Pisano, A. P. 1999 Fabrication of a free floating silicon gate valve. In Proceedings of IMECE, pp. 16. ASME.Google Scholar
Park, J. H. & Aluru, N. R. 2009 Temperature-dependent wettability on a titanium dioxide surface. Mol. Simul. 35, 3137.Google Scholar
Plesset, M. S. & Zwick, S. A. 1954 The growth of vapor bubbles in superheated liquids. J. Appl. Phys. 25 (4), 493500.Google Scholar
Qi, Y. & Klausner, J. F. 2005 Heterogeneous nucleation with artificial cavities. Trans. ASME J. Heat Transfer 127, 11891196.Google Scholar
Qiu, H. H.2014 Multiphase flow and heat transfer on micro/nanostructured surfaces. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, Florida, pp. 46–58.Google Scholar
Rini, D. P., Chen, R. H. & Chow, L. C. 2002 Bubble behaviour and nucleate boiling heat transfer in saturated FC-72 spray cooling. Trans. ASME J. Heat Transfer 124, 6372.Google Scholar
Rohsenow, W. M. 1952 A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME 74, 969976.Google Scholar
Shoji, M. & Takagi, Y. 2001 Bubbling features from a single artificial cavity. Intl J. Heat Mass Transfer 44, 27632776.Google Scholar
Srimuang, W. & Amatachaya, P. 2012 A review of the applications of heat pipe heat exchangers for heat recovery. Renew. Sustain. Energy Rev. 16, 43034315.Google Scholar
Steiner, H., Kobor, A. & Gebhard, L. 2005 A wall heat transfer model for subcooled boiling flow. Intl J. Heat Mass Transfer 48, 41614173.Google Scholar
Stephan, P. & Hammer, J. 1994 A new model for nucleate boiling heat transfer. Wärme-Stoffübertrag. 30, 119125.CrossRefGoogle Scholar
Stevens, N., Priest, C. I., Sedev, R. & Ralston, J. 2003 Wettability of photoresponsive titanium dioxide surfaces. Langmuir 19, 32723275.Google Scholar
Takata, Y., Hidaka, S., Masuda, M. & Ito, T. 2003 Pool boiling on a superhydrophilic surface. Intl J. Energy Res. 27, 111119.Google Scholar
Theofanous, R. G., Liu, C., Additon, S., Angelini, S., Kymäläinen, O. & Salmassi, T. 1997 In-vessel coolability and retention of a core melt. Nucl. Engng Des. 169, 148.Google Scholar
Thome, J. R. 2004 Boiling in microchannels: a review of experiment and theory. Intl J. Heat Fluid Flow 25, 128139.Google Scholar
Tien, C. L. 1961 A hydrodynamic model for nucleate pool boiling. Intl J. Heat Mass Transfer 5, 533540.Google Scholar
Tong, L. S. 1967 Heat transfer in water-cooled nuclear reactors. Nucl. Engng Des. 6, 301324.Google Scholar
Tsai, J. H. & Lin, L. 2002 A thermal-bubble-actuated micronozzle-diffuser pump. J. Microelectromech. Syst. 6, 665671.Google Scholar
Van der Geld, C. W. M.2014 Bubble deformation in nucleation boiling. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Orlando, Florida.Google Scholar
Van der Geld, C. W. M., Colin, C., Segers, Q. I. E., Pereira da Rosa, V. H. & Yoshikawa, H. N. 2012 Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions. Phys. Fluids 24, 082104.Google Scholar
Van Ouwerkerk, H. J. 1971 The rapid growth of a vapour bubble at a liquid–solid interface. Intl J. Heat Mass Transfer 14, 14151431.CrossRefGoogle Scholar
Van Stralen, S. & Cole, R. 1979a Boiling Phenomena (vol. 2). Hemisphere.Google Scholar
Van Stralen, S. & Cole, R. 1979b Boiling Phenomena (vol. 1). Hemisphere.Google Scholar
Vejrazka, J., Vobecka, L. & Tihon, J. 2013 Linear oscillations of a supported bubble or drop. Phys. Fluids 24, 062102.Google Scholar
Wagner, E. & Stephan, P. 2009 High-resolution measurements at nucleate boiling of pure FC-84 and FC-3284 and its binary mixtures. Trans. ASME J. Heat Transfer 131, 41854192.Google Scholar
Wayner, P. C. Jr, Kao, Y. K. & LaCroix, L. V. 1976 The interline heat-transfer coefficient of an evaporating wetting film. Intl J. Heat Mass Transfer 19, 487492.Google Scholar
Yoon, J. L. & Garrell, R. L. 2008 Encyclopedia of Microfluidics and Nanofluidics. Springer.Google Scholar
Zhang, L. & Shoji, M. 2003 Nucleation site interaction in pool boiling on the artificial surface. Intl J. Heat Mass Transfer 46, 513522.CrossRefGoogle Scholar

Baltis et al. supplementary movie

Top view movie of bubble growth, clearly showing the dry spot and motion of the contact line.

Download Baltis et al. supplementary movie(Video)
Video 55.4 KB