Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T23:15:31.923Z Has data issue: false hasContentIssue false

Gas bubbles bursting at a free surface

Published online by Cambridge University Press:  26 April 2006

Abstract

When a small air bubble bursts from an equilibrium position at an air/water interface, a complex motion ensues resulting in the production of a high-speed liquid jet. This free-surface motion following the burst is modelled numerically using a boundary integral method. Jet formation and liquid entrainment rates from jet breakup into drops are calculated and compared with existing experimental evidence. In order to investigate viscous effects, a boundary layer is included in the calculations by employing a time-stepping technique which allows the boundary mesh to remain orthogonal to the surface. This allows an approximation of the vorticity development in the region of boundary-layer separation during jet formation. Calculated values of pressure and energy dissipation rates in the fluid indicate a violent motion, particularly for smaller bubbles. This has important implications for the biological industry where animal cells in bioreactors have been found to be killed by the presence of small bubbles.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R. S., Charles, G. E. & Mason, S. G. 1961 The approach of gas bubbles to a gas/liquid interface. J. Colloid Sci. 16, 150165.Google Scholar
Bavarian, F., Fan, L. S. & Chalmers, J. J. 1991 Microscopic visualization of insect cell–bubble interactions I: Rising bubbles, air-medium interface, and the foam layer. Biotech. Prog. 7, 140150.CrossRefGoogle Scholar
Best, J. P. & Kucera, A. 1992 A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137154.Google Scholar
Bikerman, J. J. 1973 Foams. Springer.
Blanchard, D. C. & Syzdek, L. D. 1972 Concentration of bacteria in jet drops from bursting bubbles. J. Geophys. Res. 77, 50875099.Google Scholar
Boris, J. P. 1989 New directions in computational fluid dynamics. Ann. Rev. Fluid Mech. 21, 345385.Google Scholar
Chalmers, J. J. & Bavarian, F. 1991 Microscopic visualization of insect cell–bubble interactions II: The film and bubble rupture. Biotech. Prog. 7, 151159.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic.
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (I), 11281129.Google Scholar
Garner, F. H., Ellis, S. R. M. & Lacey, J. A. 1954 The size distribution and entrainment of droplets. Trans. Instn Chem. Engrs 32, 222235.Google Scholar
Guerri, L., Lucca, G. & Prosperetti, A. 1981 A numerical method for the dynamics of non-spherical cavitation bubbles. Proc. 2nd Intl Colloq. on drops and bubbles, California JPL Publication 82-7, pp. 175181.
Hahn, P.-S., Chen, J.-D. & Slattery, J. C. 1985 Effects of London–van der Waals forces on the thinning and rupture of a dimpled liquid film as a small drop or bubble approaches a fluid–fluid interface. AIChE J. 31, 20262038.CrossRefGoogle Scholar
Handa, A. 1986 Gas-liquid interfacial effects on the growth of hybridomas and other suspended mammalian cells. PhD. thesis, University of Birmingham, UK.
Handa, A., Emery, A. N. & Spier, R. E. 1987 On the evaluation of gas-liquid interfacial effects on hybridoma viability in bubble column bioreactors. Dev. Biol. Stand. 66, 241253.Google Scholar
Hicks, W. M. 1884 On the steady motion and small vibrations of a hollow vortex. Phil. Trans. R. Soc. Land. A 175, 183.Google Scholar
Ivanov, B. I., Kralchevsky, P. A. & Nikolov, A. D. 1986 Film and line tension effects on the attachment of particles to an interface. Parts I–IV. J. Colloid Interface Sci. 102, 97143.Google Scholar
Kientzler, C. F., Arons, A. B., Blanchard, D. C. & Woodcock, A. H. 1954 Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6, 17.Google Scholar
Kioukia, N. 1990 Physical and chemical factors affecting hybridoma growth. MSc dissertation, University of Birmingham, UK.
Kirkpatrick, R. D. & Lockett, M. J. 1974 The influence of approach velocity on bubble coalescence. Chem. Engng Sci. 29, 23632373.Google Scholar
Kunas, K. T. & Papoutsakis, E. T. 1990 Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotech. Bioengng 36, 476483.Google Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.
Lo, L. L. 1983 The meniscus on a needle – a lesson in matching. J. Fluid Mech. 132, 8578.Google Scholar
Longuet-Higgins, M. S. 1980 On the forming of sharp corners at a free surface. Proc. R. Soc. Lond. A 371, 453478.Google Scholar
Longust-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.Google Scholar
Longust-hIggins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I. A numerical method of computation. Proc R. Soc. Lond. A 350, 126.Google Scholar
Lundgren, T. S. & Mansour, N. N. 1988 Oscillations of drops in zero gravity with weak viscous effects. J. Fluid Mech. 194, 479510 (referred to herein as LM.)Google Scholar
Lundgren, T. S. & Mansour, N. N. 1991 Vortex ring bubbles. J. Fluid Mech. 224, 177196.Google Scholar
MacIntyre, F. 1972 Flow patterns in breaking bubbles. J. Geophys. Res. 77, 52115228.Google Scholar
Miksis, M., Vanden-Broeck, J.-M. & Keller, J. B. 1982 Rising bubbles. J. Fluid Mech. 123, 3141.Google Scholar
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.Google Scholar
Newitt, D. M., Dombrowski, N. & Knelman, F. H. 1954 Liquid entrainment 1. The mechanism of drop formation from gas or vapour bubbles. Trans. Instn Chem. Engrs 32, 244261.Google Scholar
Oguz, H. N. & Prosperetti, A. 1989 Surface tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.Google Scholar
Oh, S. K. W., Nienow, A. W., Al-Rubeai, M. & Emery, A. N. 1989 The effects of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J. Biotechnol. 1, 4562.Google Scholar
Oh, S. K. W., Nienow, A. W., Al-Rubeai, M. & Emery, A. N. 1992 Further studies of the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging. J. Biotechnol. 22, 245270.Google Scholar
Orton, D. R. & Wang, D. I. C. 1990 Effects of gas interfaces on animal cells in bubble aerated bioreactors. Paper No. 103B presented at AIChE Annual Meeting, Chicago.
Princen, H. M. 1963 Shape of a fluid drop at a liquid–liquid interface. J. Colloid Sci. 18, 178195.Google Scholar
Raleigh, Lord 1891 Some applications of photography. Nature 44, 249254.Google Scholar
Scheludko, A. 1962 Certain particulars of foam layers. II. Kinetic stability, critical thickness and equilibrium thickness. Proc. K. Ned. Akad. Wetensch. B 65, 8796.Google Scholar
Taib, B. B. 1985 Boundary element method applied to cavitation bubble dynamics. PhD. thesis, University of Wollongong, Australia.
Taylor, G. I. & Michael, D. H. 1973 On making holes in a sheet of fluid. J. Fluid Mech. 58, 625639.Google Scholar
Vrij, A. 1966 Possible mechanism for the spontaneous rupture of thin, free liquid films. Disc. Faraday Soc. 42, 2333.Google Scholar
Zhang, Z., Ferenczi, M. A., Lush, A. C. & Thomas, C. R. 1991 A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl. Microbiol. Biotechnol. 36, 208210.Google Scholar