Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T01:42:22.519Z Has data issue: false hasContentIssue false

Free convection in vertical gaps

Published online by Cambridge University Press:  20 April 2006

J. N. Koster
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Reaktorbauelemente. Postfach 3640, 7500 Karlsruhe 1, Federal Republic of Germany
U. MÜLler
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Reaktorbauelemente. Postfach 3640, 7500 Karlsruhe 1, Federal Republic of Germany

Abstract

Free convective;flow was investigated experimentally in a variety of slender vertical gaps of large horizontal extent. Temperature fields were visualized by holographic real-time interferometry, and local temperatures measured by thermocouples at the lower and upper boundaries of the gap as well as in the fluid. The critical Rayleigh number at the onset of convection was determined for different gap geometries (aspect ratios) and different thermal properties of the sidewalls and the fluid. For supercritical Rayleigh numbers, bounds of stability of steady-state two-dimensional convection were determined for transient and oscillatory states of the flow. The oscillatory flow is caused by an instability of the thermal boundary layers at the lower and upper boundaries, as evidenced by direct interferometric observation and by the measured period of oscillation depending on the Rayleigh number. The oscillations of the flow exhibit a periodic behaviour at the threshold from steady to unsteady flow. However, the periodic character of the oscillations is superseded by stochastic features im- mediately beyond the threshold Rayleigh number.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. & Behringer, R. P. 1978a Evolution of turbulence from the Rayleigh–Bénard instability. Phys. Rev. Lett. 40, 712716.Google Scholar
Ahlers, G. & Behringer, R. P. 1978b The Rayleigh–Bénard instability and the evolution of turbulence. Prog. Theor. Phys. Suppl. 64, 186201.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.
Bénard, H. 1900 Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pur. Appl. 11, 12611271, 1309–1328.Google Scholar
Bergé, P. 1979 Experiments on hydrodynamic instabilities and the transition to turbulence. In Dynamical Critical Phenomena and Related Topics (ed. C. P. Enz). Lecture Notes in Physics, vol. 104, pp. 289308. Springer.
Busse, F. H. 1981a Transition to turbulence in Rayleigh–Bénard convection. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 97137. Springer.
Busse, F. H. 1981b Transition to turbulence in thermal convection with and without rotation. In Transition and Turbulence (ed. R. E. Meyer), pp. 4361. Academic.
Busse, F. H. & Whitehead, J. A. 1974 Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid Mech. 66, 6779.Google Scholar
Caltagirone, J. P., Cloupeau, M. & Combarnous, M. 1971 Convection naturelle fluctuante dans une couche poreuse horizontale. C.R. Acad. Sci. Paris B 273, 833835.Google Scholar
Catton, I. & Edwards, D. K. 1967 Effect of side walls on natural convection between horizontal plates heated from below. Trans. A.S.M.E. C: J. Heat Transfer 89, 295299Google Scholar
Chu, T. Y. & Goldstein, R. J. 1973 Turbulent convection in a horizontal layer of water. J. Fluid Mech. 60, 141159.Google Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont.
Davis, S. H. 1967 Convection in a box: linear theory. J. Fluid Mech. 30, 465478.Google Scholar
Dubois, M. & Bergé, P. 1981 Instabilités de couche limite dans un fluide en convection. Evolution vers la turbulence. J. Phys. (Paris) 42, 167174.Google Scholar
Eckhaus, W. 1965 Studies in Nonlinear Stability Theory. Springer.
Elder, J. W. 1967a Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 2948.Google Scholar
Elder, J. W. 1967b Transient convection in a porous medium. J. Fluid Mech. 27, 609623.Google Scholar
Elder, J. W. 1968 The unstable thermal interface. J. Fluid Mech. 32, 6996.Google Scholar
Frick, H. 1981 Zellularkonvektion in Fluidschichten mit zwei festen seitlichen Berandungen. Dissertation, Universität Karlsruhe. KfK-Rep. nr. 3109.
Frick, H. & Clever, R. M. 1980 Einfluß der Seitenwände auf das Einsetzen der Konvektion in einer horizontalen Flüssigkeitsschicht. Z. angew, Math. Phys. 31, 502513.Google Scholar
Frick, H. & Clever, R. M. 1982 The influence of side walls on finite amplitude convection in a layer heated from below. J. Fluid Mech. 114, 467480.Google Scholar
Gollub, J. P. & Benson, S. V. 1978 Chaotic response to periodic perturbation of a convecting fluid. Phys. Rev. Lett. 41, 948951.Google Scholar
Gollub, J. P. & Benson, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech. 100, 449470.Google Scholar
Hartline, B. K. & Lister, C. R. B. 1977 Thermal convection in a Hele-Shaw cell. J. Fluid Mech. 79, 379389.Google Scholar
Hartline, B. K. & Lister, C. R. B. 1978 An experiment to verify the permeability of Hele-Shaw cells. Geophys. Res. Lett. 5, 225227.Google Scholar
Hauf, W. & Grigull, U. 1970 Optical methods in heat transfer. Adv. Heat Transfer 6, 133366.Google Scholar
Hele-Shaw, H. S. 1898 The flow of water. Nature 58, 3436.Google Scholar
Horne, R. N. & O'Sullivan, M. J.1974 Oscillatory convection in a porous medium heated from below. J. Fluid Mech. 66, 339352.Google Scholar
Horne, R. N. & O'Sullivan, M. J.1978 Origin of oscillatory convection in a porous medium heated from below. Phys. Fluids 21, 12601264.Google Scholar
Howard, L. N. 1964 Convection at high Rayleigh number. In Proc. 11th Int. Congr. Appl. Mech., München (ed. H. Görtler), pp. 11091115. Springer.
Koschmieder, E. L. 1966 On convection on a uniformly heated plane. Beitr. Phys. Atmos. 39, 111.Google Scholar
Koschmieder, E. L. 1969 On the wavelength of convective motions. J. Fluid Mech. 35, 527530.Google Scholar
Koster, J. N. 1980 Freie Konvektion in vertikalen Spalten. Dissertation. Universität Karlsruhe. KfK-Rep. nr. 3066.
Koster, J. N. 1982 Heat transfer in vertical gaps. Int. J. Heat Mass Transfer 25, 426428.Google Scholar
Krishnamurti, R. 1973 Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285303.Google Scholar
Kvernvold, O. 1979 On the stability of non-linear convection in a Hele-Shaw cell. Int. J. Heat Mass Transfer 22, 395400.Google Scholar
Lamb, H. 1975 Hydrodynamics, 6th edn. Dover.
Lapwood, E. R. 1948 Convection of a fluid in a porous medium. Proc. Camb. Phil Soc. 44, 508521.
Maurer, J. & Libchaber. 1979 Rayleigh–Bénard experiment in liquid helium; frequency locking and the onset of turbulence. J. Phys. (Paris) Lett. 40, 419423.Google Scholar
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 Thermal instabilities in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513528.Google Scholar
Stork, K. & Müller, U. 1972 Convection in boxes: experiments. J. Fluid Mech. 54, 599611.Google Scholar
Willis, G. E., Deardorff, J. W. & Somerville, R. C. J. 1972 Roll-diameter dependence in Rayleigh convection and its effect upon the heat flux. J. Fluid Mech. 54, 351367.Google Scholar
Wooding, R. A. 1960 Instabilities of a viscous liquid of variable density in a vertical Hele-Shaw cell. J. Fluid Mech. 7, 501515.Google Scholar