Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T08:36:03.806Z Has data issue: false hasContentIssue false

Flow and stability of helium II between concentric cylinders

Published online by Cambridge University Press:  21 April 2006

Russell J. Donnelly
Affiliation:
Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403, USA
Michelle M. Lamar
Affiliation:
Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403, USA

Abstract

We discuss our present knowledge of the flow and stability of helium II between concentric cylinders. The flow problem for helium II leads us to consider the formation of quantized vortices in the uniform rotation of helium II in an open bucket as well as quantized circulation states and vortices in a rotating annulus. We then consider how to treat the first appearance of vortices in the presence of shear, which allows us to characterize the basic flow which must be examined for stability. The results suggest an explanation for heretofore unexplained experiments. Future directions for research on the stability of helium II are suggested.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.Google Scholar
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 1983 Friction on quantized vortices in helium II. J. Low Temp. Phys. 52, 189247.Google Scholar
Barenghi, C. F. & Jones, C. A. 1987 On the stability of superfluid helium between rotating concentric cylinders. (preprint).
Bearden, J. A. 1939 A precision determination of the viscosity of air. Phys. Rev. 56, 10231040.Google Scholar
Bendt, P. J. 1966 Instability of helium II potential flow between rotating cylinders. Phys. Rev. Lett. 17, 680682.Google Scholar
Bendt, P. J. 1967a Attenuation of second sound in helium II between rotating cylinders. Phys. Rev. 153, 280284.Google Scholar
Bendt, P. J. 1967b Superfluid flow transition in rotating narrow annuli. Phys. Rev. 164, 262267.Google Scholar
Bendt, P. J. & Donnelly, R. J. 1967 Threshold for superfluid vortex lines in a rotating annulus. Phys. Rev. Lett. 19, 214216.Google Scholar
Benjamin, T. B. 1978a Bifurcation phenomena in steady flows of a viscous liquid. I. Theory. Proc. R. Soc. Lond. A 359, 126.Google Scholar
Benjamin, T. B. 1978b Bifurcation phenomena in steady flows of a viscous liquid. II. Experiments. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221249.Google Scholar
Benjamin, T. B. & Mullin, T. 1982 Notes on the multiplicity of flows in the Taylor experiment. J. Fluid. Mech. 121, 219230.Google Scholar
Burkhalter, E. & Koschmieder, E. L. 1973 Steady supercritical Taylor vortex flow. J. Fluid Mech. 58, 547560.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic & Hydromagnetic Stability. Clarendon Press.
Chandrasekhar, S. & Donnelly, R. J. 1957 The hydrodynamic stability of helium II between rotating cylinders I. Proc. R. Soc. Lond. A 241, 928.Google Scholar
Couette, M. M. 1888 Sur un nouvel appareil pour l'étude du frottement des fluides. Comptes Rendus 107, 388390.Google Scholar
Couette, M. M. 1890 Etudes sur le frottement des liquides. Ann. Chem. Phys. VI, 21, 433510.Google Scholar
Crawford, G. L., Park, K. & Donnelly, R. J. 1985 Vortex pair annihilation in Taylor wavy-vortex flow. Phys. Fluids 28, 79.Google Scholar
Di Prima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 139180. Springer.
Donnelly, R. J. 1958 Experiments on the stability of viscous flow between rotating cylinders. Proc. R. Soc. Lond. A 246, 312325.Google Scholar
Donnelly, R. J. 1959 Experiments on the hydrodynamic stability of helium II between rotating cylinders. Phys. Rev. Lett. 3, 507508.Google Scholar
Donnelly, R. J. & Fetter, A. L. 1966 Stability of superfluid flow in an annulus. Phys. Rev. Lett. 17, 747750.Google Scholar
Donnelly, R. J. & Fultz, D. 1960 Experiments on the stability of viscous flow between rotating cylinders II. Visual observations. Proc. R. Soc. Lond. A 258, 101123.Google Scholar
Donnelly, R. J. & Lamar, M. M. (1987) Absolute measurement of the viscosity of classical and quantum fluids by rotating viscometers. Phys. Rev. A 36 (in press).Google Scholar
Donnelly, R. J., Park, K., Shaw, R. & Walden, R. W. 1980 Early nonperiodic transitions in Couette flow. Phys. Rev. Lett. 44, 987989.Google Scholar
Donnelly, R. J. & Swanson, C. E. 1986 Quantum turbulence. J. Fluid Mech. 173, 387429.Google Scholar
Elleaume, P., Hulin, J. P. & Perrin, B. 1978 Hydrodynamic instabilities in the rotating Couette flow of superfluid helium. J. Phys. Paris 39, C6, 163164.Google Scholar
Fetter, A. L. 1966 Equilibrium distribution of rectilinear vortices in a rotating container. Phys. Rev. 152, 183189.Google Scholar
Fetter, A. L. 1967 Low-lying superfluid states in a rotating annulus. Phys. Rev. 153, 285296.Google Scholar
Feynman, R. P. 1955 Application of quantum mechanics to liquid helium. In Progress in Low Temperature Physics, vol. I (ed. C. J. Gorter), pp. 1753. North-Holland.
Glaberson, W. I. & Donnelly, R. J. 1986 Structure, distributions and dynamics of vortices in helium II. In Progress in Low Temperature Physics, vol. IX (ed. D. F. Brewer), pp. 3142, North-Holland.
Hall, H. E. 1960 The rotation of liquid helium II. Adv. Phys. 9, 89146.Google Scholar
Hall, H. E. & Vinen, W. F. 1955 Non-linear dissipative processes in liquid helium II. Phil. Mag. 46, 546548.Google Scholar
Heikkila, W. J. & Hollis Hallett, A. C. 1955 The viscosity of liquid helium II. Can. J. Phys. 33, 420435.Google Scholar
Hollis Hallett, A. C. 1953 Experiments with a rotating cylinder viscometer in liquid He II. Proc. Camb. Phil. Soc. 49, 717727.Google Scholar
Jeong, K. 1986 Instability of flow states in Taylor–Couette geometries. PhD thesis, University of Oregon.
Jones, C. A. 1981 Nonlinear Taylor vortices and their stability. J. Fluid Mech. 102, 249261.Google Scholar
Kapitza, P. L. 1941 The study of heat transfer in Helium II. J. Phys. USSR 4, 181210.Google Scholar
Kolm, H. H. & Herlin, M. A. 1956 New method for measuring the absolute viscosity of liquid helium II. Phys. Rev. 102, 607613.Google Scholar
London, F. 1954 Superfluids Vol. 2. Wiley.
Mallock, A. 1888 Determination of the viscosity of water. Proc. R. Soc. Lond. 13, 126133.Google Scholar
Mallock, A. 1895 Experiments on fluid viscosity. Phil. Trans. R. Soc. Lond. A 187, 4156.Google Scholar
Mamaladze, Yu. G. & Matinyan, S. G. 1983 Stability of rotation of a superfluid liquid. Sov. Phys. JETP 17, 14241425.Google Scholar
Mullin, T. 1982 Mutations of steady cellular flows in the Taylor experiment. J. Fluid. Much. 121, 207218.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics. Nouvo Cim. Suppl. 6, 279287.Google Scholar
Osborne, D. V. 1950 The rotation of liquid helium II. Proc. Phys. Soc. A 63, 909912.Google Scholar
Park, K., Crawford, G. L. & Donnelly, R. J. 1981 Determination of transition in Couette flow in finite geometries. Phys. Rev. Lett. 47, 14481450.Google Scholar
Park, K. & Donnelly, R. J. 1981 Study of the transition to Taylor vortex flow. Phys. Rev. A 24, 22772279.Google Scholar
Park, K. & Jeong, K. 1985 Transition measurements near a multiple bifurcation point in a Taylor–Couette flow. Phys. Rev. A 31, 34573459.Google Scholar
Snyder, H. A. 1969 Wave-number selection at finite amplitude in rotating Couette flow. J. Fluid Mech. 35, 273298.Google Scholar
Snyder, H. A. 1974 Rotating Couette flow of superfluid helium. In Proc. 13th Intl. Conf. Low Temp. Phys. LT13 vol. 1, pp. 283287. Plenum.
Stauffer, D. & Fetter, A. L. 1968 Distribution of vortices in rotating helium II. Phys. Rev. 168, 156159.Google Scholar
Swanson, C. E. 1985 A study of vortex dynamics in counterflowing helium II. Ph.D. Thesis, Department of Physics, University of Oregon.
Swanson, C. E. & Donnelly, R. J. 1987 Appearance of vortices in Taylor–Couette flow of helium II. J. Low Temp. Phys. 67, 185193.Google Scholar
Swanson, C. E., Wagner, W. T., Barenghi, C. F. & Donnelly, R. J. 1987 Calculation of frequency & velocity dependent mutual friction parameters in helium II. J. Low Temp. Phys. 66, 263276.Google Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Taylor, G. I. 1936 Fluid friction between rotating cylinders II – distribution of velocity between concentric cylinders when the outer one is rotating and inner one is at rest. Proc. R. Soc. Lond. A 157, 565578.CrossRefGoogle Scholar
Tough, J. T. 1982 Superfluid turbulence. In Progress in Low Temperature Physics, Vol. 8 (ed. D. F. Brewer), pp. 133219. North-Holland.
Vinen, W. F. 1961 The detection of a simple quantum of circulation in liquid helium II. Proc. R. Soc. Lond. A 260, 218236.Google Scholar
Wheeler, R. G., Blakewood, C. H. & Lane, C. T. 1955a Second sound attenuation in rotating helium II. Phys. Rev. 99, 16671672.Google Scholar
Wheeler, R. G., Blakewood, C. H. & Lane, C. T. 1955b Second sound attenuation in rotating helium II. Phys. Rev. 98, 1196.Google Scholar
Wolf, P. E., Perrin, B., Hulin, J. P. & Elleaume, P. 1981 Rotating Couette flow of helium II. J. Low Temp. Phys. 44, 569593.Google Scholar