Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T20:45:57.742Z Has data issue: false hasContentIssue false

Feedback control of flow-induced vibration of a sphere

Published online by Cambridge University Press:  26 February 2020

T. McQueen*
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
J. Zhao
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
J. Sheridan
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
M. C. Thompson
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

The flow-induced vibration of a sphere elastically mounted in the cross-flow direction with imposed feedback rotation was investigated experimentally. The application of rotation provides a means to exercise control over the vibration response of axisymmetric three-dimensional objects. Both the rotational amplitude, which was imposed in proportion to sphere transverse displacement, and the phase of the control signal were varied over a broad parameter space comprising: a non-dimensionalised proportional gain ($0.5\leqslant K_{p}^{\ast }\leqslant 2$); rotation phase ($0^{\circ }\leqslant \unicode[STIX]{x1D719}_{rot}\leqslant 360^{\circ }$), which is the phase between the applied sphere rotation and the transverse displacement; and reduced velocity ($3\leqslant$$U^{\ast }\leqslant 20$). The corresponding Reynolds number range was ($3900\lesssim Re\lesssim 25\,800$). The structural vibration, fluid forces and wake structure were examined to characterise the effect of the imposed rotation. It was found that the rotation not only altered the magnitude of the vibration response, either amplifying or attenuating the response depending on operating conditions, but it also altered the reduced velocity at which vibrations commenced, the vibration frequency and periodicity and significantly altered the phase between the transverse fluid force and displacement. It was possible to almost completely suppress the vibration in the mode I, mode II and mode III transition regimes for imposed rotation over the ranges $90^{\circ }\lesssim$$\unicode[STIX]{x1D719}_{rot}\lesssim 180^{\circ }$, $15^{\circ }\lesssim$$\unicode[STIX]{x1D719}_{rot}\lesssim 135^{\circ }$ and $0^{\circ }\lesssim$$\unicode[STIX]{x1D719}_{rot}\lesssim 120^{\circ }$, respectively. In particular, this could be achieved at effective rotation rates well below those required by using open-loop control (Sareen et al.J. Fluid Mech., vol. 837, 2018, pp. 258–292). Past the peak of mode II, a ‘galloping-like’ response, similar to that reported by Vicente-Ludlam et al. (J. Fluid Mech., vol. 847, 2018, pp. 93–118) for the circular cylinder, was observed with an increase in vibration amplitude of up to 368 % at the highest reduced velocity tested ($U^{\ast }=20$). Particle image velocimetry measurements revealed a change in the timing and spatial position of the streamwise vortex structures with imposed rotation. Contrary to what has been observed for the circular cylinder, however, no de-synchronisation between vortex shedding and sphere motion was observed.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16 (1), 195222.CrossRefGoogle Scholar
Behara, S., Borazjani, I. & Sotiropoulos, F. 2011 Vortex-induced vibrations of an elastically mounted sphere with three degrees of freedom at Re = 300: hysteresis and vortex shedding modes. J. Fluid Mech. 686, 426450.CrossRefGoogle Scholar
Behara, S. & Sotiropoulos, F. 2016 Vortex-induced vibrations of an elastically mounted sphere: the effects of Reynolds number and reduced velocity. J. Fluids Struct. 66, 5468.CrossRefGoogle Scholar
Bernitsas, M., Raghavan, K., Ben-Simon, Y. & Garcia, E. 2008 VIVACE (Vortex Induced Vibration Aquatic Clean Energy): a new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. 130 (4), 041101.CrossRefGoogle Scholar
Blevins, R. D. 1990 Flow-Induced Vibration, 2nd edn. Krieger Publishing Company.Google Scholar
Dobson, J., Ooi, A. & Poon, E. K. W. 2014 The flow structures of a transversely rotating sphere at high rotation rates. Comput. Fluids 102, 170181.CrossRefGoogle Scholar
Eshbal, L., Kovalev, D., Rinsky, V., Greenblatt, D. & van Hout, R. 2019 Tomo-PIV measurements in the wake of a tethered sphere undergoing VIV. J. Fluids Struct. 89, 132141.CrossRefGoogle Scholar
Eshbal, L., Krakovich, A. & van Hout, R. 2012 Time resolved measurements of vortex-induced vibrations of a positively buoyant tethered sphere in uniform water flow. J. Fluids Struct. 35, 185199.CrossRefGoogle Scholar
Fouras, A., Lo Jacono, D. & Hourigan, K. 2008 Target-free stereo piv: a novel technique with inherent error estimation and improved accuracy. Exp. Fluids 44 (2), 317329.CrossRefGoogle Scholar
Giacobello, M., Ooi, A. & Balachandar, S. 2009 Wake structure of a transversely rotating sphere at moderate Reynolds numbers. J. Fluid Mech. 621, 103130.CrossRefGoogle Scholar
Govardhan, R. & Williamson, C. H. K. 1997 Vortex-induced motions of a tethered sphere. J. Wind Engng Ind. Aerodyn. 69, 375385.CrossRefGoogle Scholar
Govardhan, R. N. & Williamson, C. H. K. 2005 Vortex-induced vibrations of a sphere. J. Fluid Mech. 531, 1147.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2014 Statistical axisymmetry of the turbulent sphere wake. Exp. Fluids 55 (11), 1838.CrossRefGoogle Scholar
Hémon, P., Amandolese, X. & Andrianne, T. 2017 Energy harvesting from galloping of prisms: a wind tunnel experiment. J. Fluids Struct. 70, 390402.CrossRefGoogle Scholar
van Hout, R., Eisma, J., Elsinga, G. E. & Westerweel, J. 2018 Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer. Phys. Rev. Fluids 3 (2), 024601.CrossRefGoogle Scholar
van Hout, R., Katz, A. & Greenblatt, D. 2013a Acoustic control of vortex-induced vibrations of a tethered sphere. AIAA J. 51 (3), 754757.CrossRefGoogle Scholar
van Hout, R., Katz, A. & Greenblatt, D. 2013b Time-resolved particle image velocimetry measurements of vortex and shear layer dynamics in the near wake of a tethered sphere. Phys. Fluids 25 (7), 077102.CrossRefGoogle Scholar
van Hout, R., Krakovich, A. & Gottlieb, O. 2010 Time resolved measurements of vortex-induced vibrations of a tethered sphere in uniform flow. Phys. Fluids 22 (8), 087101.CrossRefGoogle Scholar
Jauvtis, N., Govardhan, R. & Williamson, C. H. K. 2001 Multiple modes of vortex-induced vibration of a sphere. J. Fluids Struct. 15 (3), 555563.CrossRefGoogle Scholar
Kim, J., Choi, H., Park, H. & Yoo, J. Y. 2014 Inverse Magnus effect on a rotating sphere: when and why. J. Fluid Mech. 754, R2.CrossRefGoogle Scholar
Korkischko, I. & Meneghini, J. R. 2012 Suppression of vortex-induced vibration using moving surface boundary-layer control. J. Fluids Struct. 34, 259270.CrossRefGoogle Scholar
Krakovich, A., Eshbal, L. & van Hout, R. 2013 Vortex dynamics and associated fluid forcing in the near wake of a light and heavy tethered sphere in uniform flow. Exp. Fluids 54 (11), 1615.CrossRefGoogle Scholar
Law, Y. Z. & Jaiman, R. K. 2018 Passive control of vortex-induced vibration by spanwise grooves. J. Fluids Struct. 83, 126.CrossRefGoogle Scholar
Michelin, S. & Doaré, O. 2013 Energy harvesting efficiency of piezoelectric flags in axial flows. J. Fluid Mech. 714, 489504.CrossRefGoogle Scholar
Naudascher, E. & Rockwell, D. 2012 Flow-Induced Vibrations: An Engineering Guide. Dover Publications.Google Scholar
Nemes, A., Zhao, J., Lo Jacono, D. & Sheridan, J. 2012 The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102130.CrossRefGoogle Scholar
Païdoussis, M. P., Price, S. J. & de Langre, E. 2010 Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.CrossRefGoogle Scholar
Poon, E. K. W., Ooi, A. S. H., Giacobello, M. & Cohen, R. C. Z. 2010 Laminar flow structures from a rotating sphere: effect of rotating axis angle. Intl J. Heat Fluid Flow 31 (5), 961972.CrossRefGoogle Scholar
Rajamuni, M. M., Thompson, M. C. & Hourigan, K. 2018a Transverse flow-induced vibrations of a sphere. J. Fluid Mech. 837, 931966.CrossRefGoogle Scholar
Rajamuni, M. M., Thompson, M. C. & Hourigan, K. 2018b Vortex-induced vibration of a transversely rotating sphere. J. Fluid Mech. 847, 786820.CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1990 A study on vortex shedding from spheres in a uniform flow. J. Fluids Engng 112 (4), 386392.CrossRefGoogle Scholar
Sareen, A., Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K. & Thompson, M. C. 2018a Vortex-induced vibration of a rotating sphere. J. Fluid Mech. 837, 258292.CrossRefGoogle Scholar
Sareen, A., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M. C. 2018b The effect of imposed rotary oscillation on the flow-induced vibration of a sphere. J. Fluid Mech. 855, 703735.CrossRefGoogle Scholar
Sareen, A., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M. C. 2018c Vortex-induced vibrations of a sphere close to a free surface. J. Fluid Mech. 846, 10231058.CrossRefGoogle Scholar
Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.CrossRefGoogle Scholar
Silva-Ortega, M. & Assi, G. R. S. 2017 Suppression of the vortex-induced vibration of a circular cylinder surrounded by eight rotating wake-control cylinders. J. Fluids Struct. 74, 401412.CrossRefGoogle Scholar
Tsuji, Y., Morikawa, Y. & Mizuno, O. 1985 Experimental measurement of the Magnus force on a rotating sphere at low Reynolds numbers. J. Fluids Engng 107 (4), 484488.CrossRefGoogle Scholar
Vicente-Ludlam, D., Barrero-Gil, A. & Velazquez, A. 2018 Flow-induced vibration control of a circular cylinder using rotational oscillation feedback. J. Fluid Mech. 847, 93118.CrossRefGoogle Scholar
Wang, C., Tang, H., Yu, S. C. M. & Duan, F. 2016 Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation. Phys. Fluids 28 (5), 053601.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.CrossRefGoogle Scholar
Williamson, C. H. K. & Govardhan, R. 1997 Dynamics and forcing of a tethered sphere in a fluid flow. J. Fluids Struct. 11 (3), 293305.CrossRefGoogle Scholar
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36 (1), 413455.CrossRefGoogle Scholar
Wong, K. W. L., Zhao, J., Lo Jacono, D., Thompson, M. C. & Sheridan, J. 2017 Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 829, 486511.CrossRefGoogle Scholar
Wong, K. W. L., Zhao, J., Lo Jacono, D., Thompson, M. C. & Sheridan, J. 2018 Experimental investigation of flow-induced vibration of a sinusoidally rotating circular cylinder. J. Fluid Mech. 848, 430466.CrossRefGoogle Scholar
Wu, H., Sun, D. P., Lu, L., Teng, B., Tang, G. Q. & Song, J. N. 2012 Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods. J. Fluids Struct. 30, 115132.CrossRefGoogle Scholar
Zhao, J., Leontini, J., Lo Jacono, D. & Sheridan, J. 2014 Fluid-structure interaction of a square cylinder at different angles of attack. J. Fluid Mech. 747, 688721.CrossRefGoogle Scholar
Zhao, J., Lo Jacono, D., Sheridan, J., Hourigan, K. & Thompson, M. C. 2018 Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 847, 664699.CrossRefGoogle Scholar
Zhou, T., Razali, S. F. M., Hao, Z. & Cheng, L. 2011 On the study of vortex-induced vibration of a cylinder with helical strakes. J. Fluids Struct. 27 (7), 903917.CrossRefGoogle Scholar