Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-02T21:12:50.777Z Has data issue: false hasContentIssue false

Evolution of flow velocity from the leading edge of 2-D and 3-D submerged canopies

Published online by Cambridge University Press:  14 April 2021

Jiarui Lei*
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02138, USA
H. Nepf
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02138, USA
*
Email address for correspondence: [email protected]

Abstract

An analytical model was developed to predict the velocity evolution within a submerged canopy of finite width and used to explore the impact of plant flexibility and width on the velocity within the canopy. The analytical model was validated with laboratory experiments using canopies constructed from rigid cylinders and from individual model seagrass plants, consisting of six LDPE (low-density polyethylene) blades attached to a rigid sheath. Four canopy widths were considered, spanning 12.8 to 100 % of the channel width. As the canopy narrowed from the channel width (two-dimensional canopy) to finite width (12.8 % of the channel width), the velocity adjusted more rapidly at the leading edge and reached a lower fully developed in-canopy velocity. Predictions from the analytical model had good agreement with field and laboratory studies with real vegetation. Once validated, the model was applied to a range of field conditions to predict the within-canopy flow velocity and the adjustment length, which is the distance required for the flow to be fully developed.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelrhman, M.A. 2007 Modeling coupling between eelgrass Zostera marina and water flow. Mar. Ecol. Prog. Ser. 338, 8196.CrossRefGoogle Scholar
Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. & Silliman, B.R. 2011 The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81 (2), 169193.CrossRefGoogle Scholar
Belcher, S.E., Jerram, N. & Hunt, J.C.R. 2003 Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369398.CrossRefGoogle Scholar
Chen, Z., Jiang, C. & Nepf, H. 2013 Flow adjustment at the leading edge of a submerged aquatic canopy. Water Resour. Res. 49 (9), 55375551.CrossRefGoogle Scholar
Costanza, R., et al. 1997 The value of the world's ecosystem services and natural capital. Nature 387 (6630), 253260.CrossRefGoogle Scholar
Cullen-Unsworth, L. & Unsworth, R. 2013 Seagrass meadows, ecosystem services, and sustainability. Environ. Sci. Policy Sustain. Dev. 55 (3), 1428.CrossRefGoogle Scholar
Dahl, M., Infantes, E., Clevesjö, R., Linderholm, H.W., Björk, M. & Gullström, M. 2018 Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: insights from a flume experiment. Limnol. Oceanogr. 63 (6), 27932805.CrossRefGoogle Scholar
Duarte, C.M. & Sand-Jensen, K.A.J. 1990 Seagrass colonization: patch formation and patch growth in Cymodocea nodosa. Mar. Ecol. Prog. Ser. 193200.CrossRefGoogle Scholar
Ellington, C.P. 1991 Aerodynamics and the origin of insect flight. Adv. Insect Physiol. 23, 171210CrossRefGoogle Scholar
Etminan, V., Lowe, R.J. & Ghisalberti, M. 2017 A new model for predicting the drag exerted by vegetation canopies. Water Resour. Res. 53 (4), 31793196.CrossRefGoogle Scholar
Folkard, A.M. 2005 Hydrodynamics of model Posidonia oceanica patches in shallow water. Limnol. Oceanogr. 50 (5), 15921600.CrossRefGoogle Scholar
Fonseca, M.S. & Bell, S.S. 1998 Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Mar. Ecol. Prog. Ser. 171, 109121.CrossRefGoogle Scholar
Fonseca, M.S. & Koehl, M.A.R. 2006 Flow in seagrass canopies: the influence of patch width. Estuar. Coast. Shelf Sci. 67 (1–2), 19.CrossRefGoogle Scholar
Fonseca, M.S., Koehl, M.A.R. & Fourqurean, J.W. 2019 Effect of seagrass on current speed: importance of flexibility versus shoot density. Front. Mar. Sci. 6, 376.CrossRefGoogle Scholar
Fourqurean, J.W., et al. 2012 Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5 (7), 505509.CrossRefGoogle Scholar
Fourqurean, J., Marbà, N., Duarte, C.M., DÍaz-Almela, E. & Ruiz-Halpern, S. 2007 Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears. Spain. Mar. Biol. 151 (1), 219232.CrossRefGoogle Scholar
Gambi, M.C., Nowell, A.R.M. & Jumars, P.A. 1990 Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser. 159169.CrossRefGoogle Scholar
Ghisalberti, M. & Nepf, H. 2009 Shallow flows over a permeable medium: the hydrodynamics of submerged aquatic canopies. Transport Porous Med. 78 (2), 385402.CrossRefGoogle Scholar
Gioia, G. & Bombardelli, F.A. 2001 Scaling and similarity in rough channel flows. Phys. Rev. Lett. 88 (1), 014501.CrossRefGoogle ScholarPubMed
Guidetti, P., Lorenti, M., Buia, M. & Mazzella, L. 2002 Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. Mar. Ecol. 23 (1), 5167.CrossRefGoogle Scholar
Hansen, J.C.R. & Reidenbach, M.A. 2012 Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar. Ecol. Prog. Ser. 448, 271287.CrossRefGoogle Scholar
Harvey, J.W., Noe, G.B., Larsen, L.G., Nowacki, D.J. & McPhillips, L.E. 2011 Field flume reveals aquatic vegetation's role in sediment and particulate phosphorus transport in a shallow aquatic ecosystem. Geomorphology 126 (3–4), 297313.CrossRefGoogle Scholar
van Katwijk, M.M., Bos, A.R., Hermus, D.C.R. & Suykerbuyk, W. 2010 Sediment modification by seagrass beds: muddification and sandification induced by plant cover and environmental conditions. Estuar. Coast. Shelf Sci. 89 (2), 175181.CrossRefGoogle Scholar
van Katwijk, M.M., et al. 2016 Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53 (2), 567578.CrossRefGoogle Scholar
Konings, A.G., Katul, G.G. & Thompson, S.E. 2012 A phenomenological model for the flow resistance over submerged vegetation. Water Resour. Res. 48 (2), W02522.CrossRefGoogle Scholar
Laugier, T., Rigollet, V. & de Casabianca, M.L. 1999 Seasonal dynamics in mixed eelgrass beds, Zostera marina L. and Z. noltii Hornem., in a Mediterranean coastal lagoon (Thau lagoon, France). Aquat. Bot. 63 (1), 5169.CrossRefGoogle Scholar
Luhar, M., Coutu, S., Infantes, E., Fox, S. & Nepf, H. 2010 Wave-induced velocities inside a model seagrass bed. J. Geophys. Res.: Oceans 115, C12005.CrossRefGoogle Scholar
Luhar, M., Infantes, E., Orfila, A., Terrados, J. & Nepf, H.M. 2013 Field observations of wave-induced streaming through a submerged seagrass (Posidonia oceanica) meadow. J. Geophys. Res.: Oceans 118 (4), 19551968.CrossRefGoogle Scholar
Luhar, M. & Nepf, H.M. 2011 Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56 (6), 20032017.CrossRefGoogle Scholar
Marbá, N., Duarte, C.M., Cebrián, J., Gallegos, M.E., Olesen, B. & Sand-Jensen, K. 1996 Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar. Ecol. Prog. Ser. 137, 203213.CrossRefGoogle Scholar
Montefalcone, M., Parravicini, V., Vacchi, M., Albertelli, G., Ferrari, M., Morri, C. & Bianchi, C.N. 2010 Human influence on seagrass habitat fragmentation in NW mediterranean sea. Estuar. Coast. Shelf Sci. 86 (2), 292298.CrossRefGoogle Scholar
Moore, K.A. 2004 Influence of seagrasses on water quality in shallow regions of the Lower Chesapeake Bay. J. Coast. Res. 10045, 162178.CrossRefGoogle Scholar
Nepf, H., Ghisalberti, M., White, B. & Murphy, E. 2007 Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res. 43 (4), W04422.CrossRefGoogle Scholar
Nepf, H.M. & Vivoni, E.R. 2000 Flow structure in depth-limited, vegetated flow. J. Geophys. Res.: Oceans 105 (C12), 2854728557.CrossRefGoogle Scholar
Nepf, H.M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.CrossRefGoogle Scholar
Oreska, M.P.J., McGlathery, K.J. & Porter, J.H. 2017 Seagrass blue carbon spatial patterns at the meadow-scale. PLoS One 12 (4), e0176630.CrossRefGoogle ScholarPubMed
Pergent-Martini, C., Rico-Raimondino, V. & Pergent, G. 1994 Primary production of Posidonia oceanica in the Mediterranean Basin. Mar. Biol. 120 (1), 915.Google Scholar
Rominger, J.T. & Nepf, H.M. 2011 Flow adjustment and interior flow associated with a rectangular porous obstruction. J. Fluid Mech. 680, 636659.CrossRefGoogle Scholar
Sukhodolova, T.A. & Sukhodolov, A.N. 2012 Vegetated mixing layer around a finite-size patch of submerged plants: 1. Theory and field experiments. Water Resour. Res. 48 (10), W10533.CrossRefGoogle Scholar
Sutton-Grier, A.E., Wowk, K. & Bamford, H. 2015 Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137148.CrossRefGoogle Scholar
White, B.L. & Nepf, H.M. 2008 A vortex-based model of velocity and shear stress in a partially vegetated shallow channel. Water Resour. Res. 44 (1), W01412.CrossRefGoogle Scholar
Wilcock, R.J., Champion, P.D., Nagels, J.W. & Croker, G.F. 1999 The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiologia 416, 203214.CrossRefGoogle Scholar
Zhang, J., Lei, J., Huai, W. & Nepf, H. 2020 Turbulence and particle deposition under steady flow along a submerged seagrass meadow. J. Geophys. Res.: Oceans 125 (5), e2019JC015985.Google Scholar
Zong, L. & Nepf, H. 2010 Flow and deposition in and around a finite patch of vegetation. Geomorphology 116 (3–4), 363372.CrossRefGoogle Scholar