Published online by Cambridge University Press: 21 April 2006
The Burgers equation, in spherical and cylindrical symmetries, is studied numerically using pseudospectral and implicit finite difference methods, starting from discontinuous initial (N wave) conditions. The study spans long and varied regimes–embryonic shock, Taylor shock, thick evolutionary shock, and (linear) old age. The initial steep-shock regime is covered by the more accurate pseudospectral approach, while the later smooth regime is conveniently handled by the (relatively inexpensive) implicit scheme. We also give some analytic results for both spherically and cylindrically symmetric cases. The analytic forms of the Reynolds number are found. These give results in close agreement with those found from the numerical solutions. The terminal (old age) solutions are also completely determined. Our analysis supplements that of Crighton & Scott (1979) who used a matched asymptotic approach. They found analytic solutions in the embryonic-shock and the Taylor-shock regions for all geometries, and in the evolutionary-shock region, leading to old age, for the spherically symmetric case. The numerical solution of Sachdev & Seebass (1973) is updated in a comprehensive manner; in particular, the embryonic-shock regime and the old-age solution missed by their study are given in detail. We also study numerically the non-planar equation in the form for which the viscous term has a variable coefficient. It is shown that the numerical methods used in the present study are sufficiently versatile to tackle initial-value problems for generalized Burgers equations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.