Published online by Cambridge University Press: 26 April 2006
A biplane grid with a mesh spacing of 10.8 cm was towed horizontally in a towing tank to generate turbulence in a non-stratified fluid and in stratified fluids with different constant density gradients. Turbulence velocity components and density fluctuations were measured using an array of cross-film and conductivity probes. Based on the mesh size of the grid, the nominal values of the (internal) Froude numbers were ∞, 80 and 40, and the corresponding Reynolds number was 4.3 × 104. The decay rates of the (turbulence) kinetic, potential and total energies and the dissipation rates of the kinetic and potential energies were calculated from the experimental data. For each of these quantities, the decay may be represented as a function of the downstream distance raised to a given power. The kinetic energy and its dissipation rate are lower for the stratified cases than for the non-stratified case but are almost compensated for by the corresponding potential energy and its dissipation rate. Our results are consistent with those of direct numerical simulations and agree reasonably well with those obtained in stratified wind and water tunnels. However, the results differ from laboratory results obtained using an optical method to measure the turbulent motion of tracer particles in the wake of a vertically towed grid; these latter results show an abrupt reduction in the decay rate of the turbulence kinetic energy after one Brunt–Väisälä period. A similar trend is also observed in results obtained in facilities with fairly high background turbulence or internal waves. This discrepancy is discussed and an explanation is presented. Furthermore, it is demonstrated that strongly stratified thin sheets with density gradients larger than that of the undisturbed fluid may be generated by local but incomplete mixing. The persistence of such thin sheets is proportional to the Schmidt number (≈ 500) in stratified salt water or the Prandtl number (≈ 0.71) in thermally stratified air.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.