Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T05:03:10.509Z Has data issue: false hasContentIssue false

Dynamics and rheology of elastic particles in an extensional flow

Published online by Cambridge University Press:  09 January 2013

Tong Gao
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Howard H. Hu*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Pedro Ponte Castañeda
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
*
Email address for correspondence: [email protected]

Abstract

We investigate the dynamics and rheology of elastic particles in a viscous extensional flow under Stokes flow conditions by means of the large deformation method developed by Gao, Hu & Ponte Castañeda (J. Fluid Mech., vol. 687, 2011, pp. 209–237). The particles are assumed to be homogeneous, incompressible and neo-Hookean solids. When subjected to extensional flow, an initially ellipsoidal (elliptical) elastic particle stretches and rotates simultaneously, tending to deform into a stable ellipsoidal shape with the initial major axis aligned with the extension direction. However, the steady-state solutions may not exist when the particle stiffness is lower than a certain critical value. By using the solution of a single particle, the macroscopic rheological properties are evaluated for a dilute suspension of elastic particles under extension. Similar to some polymer blends, softer particles lead to a larger extensional viscosity for the suspension.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aravas, N. & Ponte Castañeda, P. 2004 Numerical methods for porous metals with deformation-induced anisotropy. Comput. Meth. Appl. Mech. Engng 193, 37673805.Google Scholar
Bagchi, P. & Kalluri, R. M. 2011 Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid Mech. 669, 498526.Google Scholar
Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 831853.CrossRefGoogle Scholar
Barthès-Biesel, D. 2011 Modelling the motion of capsules in flow. Curr. Opin. Colloid Interface Sci. 16, 312.Google Scholar
Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.Google Scholar
Batchelor, G. K. 1971 The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 46, 813829.CrossRefGoogle Scholar
Bilby, B. A. & Kolbuszewski, M. L. 1977 The finite deformation of an inhomogeneity in two-dimensional slow viscous incompressible flow. Proc. R. Soc. Lond. A 355, 335353.Google Scholar
Bird, R. B., Armstrong, R. C., Hassager, O. & Curtiss, C. F. 1987 Dynamics of Polymeric Liquids, Kinetic Theory, Vol. 2. John Wiley & Sons.Google Scholar
Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particless. Intl J. Multiphase Flow 1, 195341.Google Scholar
Chang, K. S. & Olbricht, W. L. 1993 Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 250, 581608.Google Scholar
Danker, G. & Misbah, C. 2007 Rheology of a dilute suspension of vesicles. Phys. Rev. Lett. 98, 088104.Google Scholar
Diaz, A., Pelekasis, N. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12, 948957.CrossRefGoogle Scholar
Dodson, W. R. & Dimitrakopoulosn, P. 2009 Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J. Fluid Mech. 641, 263296.Google Scholar
Eshelby, J. D. 1957 The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376396.Google Scholar
Eshelby, J. D. 1959 The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561569.Google Scholar
Fernandez-Nieves, A., Wyss, H., Mattsson, J. & Weitz, D. A. 2011 Microgel Suspensions. Wiley-VCH.Google Scholar
Gao, T. & Hu, H. H. 2009 Deformation of elastic particles in viscous shear flow. J. Comput. Phys. 228, 21322151.CrossRefGoogle Scholar
Gao, T., Hu, H. H. & Ponte Castañeda, P. 2011 Rheology of a suspension of elastic particles in a viscous shear flow. J. Fluid Mech. 687, 209237.Google Scholar
Gao, T., Hu, H. H. & Ponte Castañeda, P. 2012 Shape dynamics and rheology of soft elastic particles in a shear flow. Phys. Rev. Lett. 108, 058302.CrossRefGoogle Scholar
Goddard, J. D. & Miller, C. 1967 Nonlinear effects in a rheology of dilute suspensions. J. Fluid Mech. 28, 657673.Google Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley.Google Scholar
Jackson, N. E. & Tucker, C. L. 2003 A model for large deformation of an ellipsoidal droplet with interfacial tension. J. Rheol. 47, 659682.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102, 161179.Google Scholar
Junkins, J. L. & Turner, J. D. 1978 Optimal continuous torque attitude maneuvers. AIAA-AAS Astrodynamics Conference, Palo Alto, CA, Vol. 3, pp. 210–217.Google Scholar
Kailasam, M. & Ponte Castañeda, P. 1998 A general constitutive theory for linear and nonlinear particulate media with microstructure evolution. J. Mech. Phys. Solids 46, 427465.CrossRefGoogle Scholar
Kantsler, V. & Steinberg, V. 2006 Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96, 036001.CrossRefGoogle ScholarPubMed
Khademhosseini, A. & Langer, R. 2007 Microengineered hydrogels for tissue engineering. Biomaterials 28, 50875092.CrossRefGoogle ScholarPubMed
Kwak, S. & Pozrikidis, C. 2001 Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13, 12341242.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1976 Mechanics, 3rd edn. Butterworth-Heinemann.Google Scholar
Lee, S. T. 2000 Foam Extrusion: Principles and Practice. CRC Press.Google Scholar
Li, X. Z., Barthès-Biesel, D. & Helmy, A. 1988 Large deformation and burst of a capsule freely suspended in an elongational flow. J. Fluid Mech. 187, 179196.CrossRefGoogle Scholar
Macosko, C. W. 1994 Rheology: Principals, Measurements and Applications. VCH.Google Scholar
Minale, M. 2010 Models for the deformation of a single ellipsoidal drop: a review. Rheol. Acta 49, 789806.Google Scholar
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.Google Scholar
Noguchi, H. & Gompper, G. 2007 Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103.Google Scholar
Nordstrom, K. N., Verneuil, E., Arratia, P. E., Basu, A., Zhang, Z., Yodh, A. G., Gollub, J. P. & Durian, D. J. 2010 Microfluidic rheology of soft colloids above and below jamming. Phys. Rev. Lett. 105, 175701.Google Scholar
Ogden, R. W. 1984 Nonlinear Elastic Deformations. Dover.Google Scholar
Oh, J. K., Drumright, R., Siegwart, D. J. & Matyjaszewski, K. 2008 The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448477.Google Scholar
Pal, R. 2007 Rheology of Particulate Dispersions and Composites. CRC Press.Google Scholar
Pozrikidis, C. 1990 The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow. J. Fluid Mech. 216, 231254.Google Scholar
Pozrikidis, C. 2010 Computational Hydrodynamics of Capsules and Biological Cells. CRC Press.Google Scholar
Roscoe, R. 1967 On the rheology of a suspension of viscoelastic spheres in a viscous liquid. J. Fluid Mech. 28, 273293.Google Scholar
Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13137.Google Scholar
Spitael, P. & Macosko, C. W. 2004 Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Engng Sci. 36, 20902100.CrossRefGoogle Scholar
Tallec, P. Le & Mouro, J. 2001 Fluid structure interaction with large structural displacements. Comput. Meth. Appl. Mech. Engng 190, 30393067.Google Scholar
Vlahovska, P. M., Young, Y.-N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.Google Scholar
Wetzel, E. D. & Tucker, C. L. 2001 Droplet deformation in dispersions with unequal viscosities and zero interfacial tension. J. Fluid Mech. 426, 199228.Google Scholar
Willis, J. R. 1981 Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 178.Google Scholar
Zhang, L., Gerstenberger, A., Wang, X. & Liu, W. K. 2004 Immersed finite element method. Comput. Meth. Appl. Mech. Engng 193, 20512067.Google Scholar
Zhang, Z., Xu, N., Chen, D. T. N., Yunker, P., Alsayed, A., Aptowicz, K. B., Habdas, P., Liu, A. J., Nagel, S. & Yodh, A. G. 2009 Thermal vestige of the zero-temperature jamming transition. Nature 459, 230233.Google Scholar
Zhao, H. & Shaqfeh, E. S. G. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.Google Scholar