Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T04:55:23.858Z Has data issue: false hasContentIssue false

Deformation of soap films pushed through tubes at high velocity

Published online by Cambridge University Press:  19 May 2010

BENJAMIN DOLLET*
Affiliation:
Institut de Physique de Rennes, UMR 6251 CNRS/Université de Rennes 1, Campus Beaulieu, Bâtiment 11A, 35042 Rennes Cedex, France
ISABELLE CANTAT
Affiliation:
Institut de Physique de Rennes, UMR 6251 CNRS/Université de Rennes 1, Campus Beaulieu, Bâtiment 11A, 35042 Rennes Cedex, France
*
Email address for correspondence: [email protected]

Abstract

The behaviour of soap films pushed through tubes at large velocities, up to several metres per second, is investigated in this paper. The film shape deviates from its equilibrium configuration perpendicular to the walls and gets curved downstream. A simple model relates the radius of curvature of the film to the friction in the lubrication films touching the wall, and the scaling of Bretherton (J. Fluid Mech., vol. 10, 1961, pp. 166–188) holds up to surprisingly high velocities, at which the capillary and Weber numbers are no longer small parameters. The tube geometry is varied and accounted for through the notion of hydraulic diameter. A limit of stability of the films, beyond which they burst or evolve unsteadily, is predicted, and it quantitatively captures the observations. The new questions raised by our results on the dissipation in soap films are discussed, especially the role of Plateau borders and inertial effects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Besson, S., Debrégeas, G., Cohen-Addad, S. & Höhler, R. 2008 Dissipation in a sheared foam: from bubble adhesion to foam rheology. Phys. Rev. Lett. 101, 214504.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.CrossRefGoogle Scholar
Cantat, I., Kern, N. & Delannay, R. 2004 Dissipation in foam flowing through narrow channels. Europhys. Lett. 65, 726732.CrossRefGoogle Scholar
Chowdiah, P., Misra, B. R., Kilbane, J. J., Srivastava, V. J. & Hayes, T. D. 1998 Foam propagation through soils for enhanced in-situ remediation. J. Hazardous Mater. 62, 265280.CrossRefGoogle Scholar
Concus, P. & Finn, R. 1969 On the behaviour of a capillary surface in a wedge. Proc. Natl Acad. Sci. 63, 292299.Google Scholar
Denkov, N. D., Subramanian, V., Gurovich, D. & Lips, A. 2005 Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids Surf. A 263, 129145.CrossRefGoogle Scholar
Drenckhan, W., Cox, S. J., Delaney, G., Holste, H., Weaire, D. & Kern, N. 2005 Rheology of ordered foams – on the way to discrete microfluidics. Colloids Surf. A 263, 5264.CrossRefGoogle Scholar
Hirasaki, G. J. & Lawson, J. B. 1985 Mechanisms of foam media: apparent viscosity in smooth capillaries. Soc. Pet. Engng J. 25, 176190.Google Scholar
Höhler, R. & Cohen-Addad, S. 2005 Rheology of liquid foams. J. Phys. Condens. Matter 17, R1041R1069.Google Scholar
Kornev, K. G., Neimark, A. V. & Rozhkov, A. N. 1999 Foam in porous media: thermodynamic and hydrodynamic peculiarities. Adv. Colloid Interface Sci. 82, 127187.Google Scholar
Marmottant, P. & Raven, J. P. 2009 Microfluidics with foams. Soft Matter 5, 33853388.CrossRefGoogle Scholar
Quéré, D. & de Ryck, A. 1998 Le mouillage dynamique des fibres. Ann. Phys. Fr. 23, 1149.CrossRefGoogle Scholar
Ratulowski, J. & Chang, H. C. 1990 Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries. J. Fluid Mech. 210, 303328.CrossRefGoogle Scholar
Raufaste, C., Foulon, A. & Dollet, B. 2009 Dissipation in quasi-two-dimensional flowing foams. Phys. Fluids 21, 053102.Google Scholar
Rossen, W. R. & Gauglitz, P. A. 1990 Percolation theory of creation and mobilization of foams in porous media. AIChE J. 36, 11761188.CrossRefGoogle Scholar
Saugey, A., Drenckhan, W. & Weaire, D. 2006 Wall slip of bubbles in foams. Phys. Fluids 18, 053101.CrossRefGoogle Scholar
Shen, A. Q., Gleason, B., McKinley, G. H. & Stone, H. A. 2002 Fiber coating with surfactant solutions. Phys. Fluids 14, 40554068.CrossRefGoogle Scholar