Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T06:51:03.279Z Has data issue: false hasContentIssue false

Critical transition in fast-rotating turbulence within highly elongated domains

Published online by Cambridge University Press:  27 July 2020

Adrian van Kan*
Affiliation:
Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
Alexandros Alexakis
Affiliation:
Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
*
Email address for correspondence: [email protected]

Abstract

We study rapidly rotating turbulent flows in a highly elongated domain using an asymptotic expansion at simultaneously low Rossby number $Ro\ll 1$ and large domain height compared with the energy injection scale, $h=H/\ell _{in}\gg 1$. We solve the resulting equations using an extensive set of direct numerical simulations for different parameter regimes. As the parameter $\lambda = (h Ro)^{-1}$ is increased beyond a threshold $\lambda _c$, a transition is observed from a state without an inverse energy cascade to a state with an inverse energy cascade. For large Reynolds number and large horizontal box size, we provide evidence for criticality of the transition in terms of the large-scale energy dissipation rate.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexakis, A. 2011 Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field. Phys. Rev. E 84 (5), 056330.CrossRefGoogle ScholarPubMed
Alexakis, A. 2015 Rotating Taylor–Green flow. J. Fluid Mech. 769, 4678.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Baroud, C. N., Plapp, B. B., She, Z.-S. & Swinney, H. L. 2002 Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88 (11), 114501.CrossRefGoogle Scholar
Baroud, C. N., Plapp, B. B., Swinney, H. L. & She, Z.-S. 2003 Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows. Phys. Fluids 15 (8), 20912104.CrossRefGoogle Scholar
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.CrossRefGoogle Scholar
Benavides, S. J. & Alexakis, A. 2017 Critical transitions in thin-layer turbulence. J. Fluid Mech. 822, 364385.CrossRefGoogle Scholar
Biferale, L., Bonaccorso, F., Mazzitelli, I. M., van Hinsberg, M. A. T., Lanotte, A. S., Musacchio, S., Perlekar, P. & Toschi, F. 2016 Coherent structures and extreme events in rotating multiphase turbulent flows. Phys. Rev. X 6 (4), 041036.Google Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Ann. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability. Phys. Rev. Lett. 124 (12), 124501.CrossRefGoogle ScholarPubMed
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018 a Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3 (3), 034802.CrossRefGoogle Scholar
Buzzicotti, M., Clark Di Leoni, P. & Biferale, L. 2018 b On the inverse energy transfer in rotating turbulence. Eur. Phys. J. E 41 (11), 131.CrossRefGoogle ScholarPubMed
Calkins, M. A., Julien, K., Tobias, S. M. & Aurnou, J. M. 2015 A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech. 780, 143166.CrossRefGoogle Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P. 2014 Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26 (12), 125112.CrossRefGoogle Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P. 2015 Disentangling inertial waves from eddy turbulence in a forced rotating turbulence experiment. Phys. Rev. E 91 (4), 043016.CrossRefGoogle Scholar
Campagne, A., Machicoane, N., Gallet, B., Cortet, P.-P. & Moisy, F. 2016 Turbulent drag in a rotating frame. J. Fluid Mech. 794, R5.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104, 184506.CrossRefGoogle ScholarPubMed
Chantry, M., Tuckerman, L. S. & Barkley, D. 2017 Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech. 824, R1.CrossRefGoogle Scholar
Chen, Q., Chen, S., Eyink, G. L. & Holm, D. D. 2005 Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 542, 139164.CrossRefGoogle Scholar
Clark Di Leoni, P., Buzzicotti, M., Alexakis, A. & Biferale, L. 2020 Energy transfer in turbulence under rotation. arXiv:2002.08784Google Scholar
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90 (2), 023005.CrossRefGoogle ScholarPubMed
Dickinson, S. C. & Long, R. R. 1983 Oscillating-grid turbulence including effects of rotation. J. Fluid Mech. 126, 315333.CrossRefGoogle Scholar
Duran-Matute, M., Fólr, J.-B., Godeferd, F. S. & Jause-Labert, C. 2013 Turbulence and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87 (4), 041001.CrossRefGoogle ScholarPubMed
Embid, P. F. & Majda, A. J. 1998 Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87 (12), 150.CrossRefGoogle Scholar
Favier, B., Godeferd, F. S. & Cambon, C. 2010 On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22 (1), 015101.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gallet, B. 2015 Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 783, 412447.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.CrossRefGoogle ScholarPubMed
Godeferd, F. S. & Lollini, L. 1999 Direct numerical simulations of turbulence with confinement and rotation. J. Fluid Mech. 393, 257308.CrossRefGoogle Scholar
Goldenfeld, N. & Shih, H.-Y. 2017 Turbulence as a problem in non-equilibrium statistical mechanics. J. Stat. Phys. 167 (3), 575594.CrossRefGoogle Scholar
Greenspan, H. P. G. 1968 The Theory of Rotating Fluids. CUP Archive.Google Scholar
Grooms, I., Julien, K., Weiss, J. B. & Knobloch, E. 2010 Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104 (22), 224501.CrossRefGoogle ScholarPubMed
Hopfinger, E. J., Browand, F. K. & Gagne, Y. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.CrossRefGoogle Scholar
Hough, S. S. 1897 IX. On the application of harmonic analysis to the dynamical theory of the tides. Part 1. On Laplace's “oscillations of the first species” and the dynamics of ocean currents. Phil. Trans. R. Soc. Lond. A 189, 201257.Google Scholar
Ibbetson, A. & Tritton, D. J. 1975 Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68(4), 639672.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Milliff, R. & Werne, J. 2006 Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555, 233274.CrossRefGoogle Scholar
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012 a Heat transport in low-Rossby-number Rayleigh-Bénard convection. Phys. Rev. Lett. 109 (25), 254503.CrossRefGoogle ScholarPubMed
Julien, K., Knobloch, E. & Werne, J. 1998 A new class of equations for rotationally constrained flows. Theor. Comput. Fluid Dyn. 11 (3–4), 251261.CrossRefGoogle Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012 b Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (45), 392428.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2019 Condensates in thin-layer turbulence. J. Fluid Mech. 864, 490518.CrossRefGoogle Scholar
van Kan, A., Nemoto, T. & Alexakis, A. 2019 Rare transitions to thin-layer turbulent condensates. J. Fluid Mech. 878, 356369.CrossRefGoogle Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2019 Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879, 296326.CrossRefGoogle Scholar
Le Reun, T., Gallet, B., Favier, B. & Le Bars, M. 2020 Near-resonant instability of geostrophic modes: beyond Greenspan's theorem. arXiv:2002.12425.Google Scholar
Lemoult, G., Shi, L., Avila, K., Jalikop, S. V., Avila, M. & Hof, B. 2016 Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12 (3), 254.CrossRefGoogle Scholar
Machicoane, N., Moisy, F. & Cortet, P.-P. 2016 Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid. Phys. Rev. Fluids 1 (7), 073701.CrossRefGoogle Scholar
Manneville, P. 2009 Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E 79 (2), 025301.CrossRefGoogle ScholarPubMed
Marino, R., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2013 Inverse cascades in rotating stratified turbulence: fast growth of large scales. Europhys. Lett. 102 (4), 44006.CrossRefGoogle Scholar
Marino, R., Pouquet, A. & Rosenberg, D. 2015 Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 114 (11), 114504.CrossRefGoogle ScholarPubMed
Mininni, P. D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 015108.CrossRefGoogle Scholar
Mininni, P. D. & Pouquet, A. 2010 Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22 (3), 035105.CrossRefGoogle Scholar
Mininni, P. D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI-openMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37 (6–7), 316326.CrossRefGoogle Scholar
Morize, C. & Moisy, F. 2006 Energy decay of rotating turbulence with confinement effects. Phys. Fluids 18 (6), 065107.CrossRefGoogle Scholar
Moxey, D. & Barkley, D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. 107 (18), 80918096.CrossRefGoogle ScholarPubMed
Musacchio, S. & Boffetta, G. 2017 Split energy cascade in turbulent thin fluid layers. Phys. Fluids 29 (11), 111106.CrossRefGoogle Scholar
Musacchio, S. & Boffetta, G. 2019 Condensate in quasi-two-dimensional turbulence. Phys. Rev. Fluids 4 (2), 022602.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence, vol. 825. Springer Science & Business Media.CrossRefGoogle Scholar
Nazarenko, S. V. & Schekochihin, A. A. 2011 Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture. J. Fluid Mech. 677, 134153.CrossRefGoogle Scholar
Pedlosky, J. 2013 Geophysical Fluid Dynamics. Springer Science & Business Media.Google Scholar
Pestana, T. & Hickel, S. 2019 Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E 99 (5), 053103.CrossRefGoogle ScholarPubMed
Pestana, T. & Hickel, S. 2020 Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence. J. Fluid Mech. 885.CrossRefGoogle Scholar
Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23 (1–3), 311.CrossRefGoogle Scholar
Poujol, B., van Kan, A. & Alexakis, A. 2020 Role of the forcing dimensionality in thin-layer turbulent energy cascades. arXiv:2003.11485.CrossRefGoogle Scholar
Pouquet, A., Rosenberg, D., Stawarz, J. E. & Marino, R. 2019 Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci. 6 (3), 351369.CrossRefGoogle Scholar
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92 (642), 408424.Google Scholar
Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112 (14), 144501.CrossRefGoogle ScholarPubMed
Sahoo, G., Alexakis, A. & Biferale, L. 2017 Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Phys. Rev. Lett. 118 (16), 164501.CrossRefGoogle ScholarPubMed
Sahoo, G. & Biferale, L. 2015 Disentangling the triadic interactions in Navier–Stokes equations. Eur. Phys. J. E 38 (10), 114.CrossRefGoogle ScholarPubMed
Sen, A., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Phys. Rev. E 86 (3), 036319.CrossRefGoogle ScholarPubMed
Seshasayanan, K. & Alexakis, A. 2016 Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow. Phys. Rev. E 93 (1), 013104.CrossRefGoogle ScholarPubMed
Seshasayanan, K. & Alexakis, A. 2018 Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434462.CrossRefGoogle Scholar
Seshasayanan, K., Benavides, S. J. & Alexakis, A. 2014 On the edge of an inverse cascade. Phys. Rev. E 90 (5), 051003.CrossRefGoogle ScholarPubMed
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two-to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 2467.CrossRefGoogle ScholarPubMed
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.CrossRefGoogle Scholar
Sozza, A., Boffetta, G., Muratore-Ginanneschi, P. & Musacchio, S. 2015 Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids 27 (3), 035112.CrossRefGoogle Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.CrossRefGoogle Scholar
Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.CrossRefGoogle Scholar
Taylor, G. I. 1917 Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. A 93 (648), 99113.Google Scholar
Thiele, M. & Müller, W.-C. 2009 Structure and decay of rotating homogeneous turbulence. J. Fluid Mech. 637, 425442.CrossRefGoogle Scholar
Valente, P. C. & Dallas, V. 2017 Spectral imbalance in the inertial range dynamics of decaying rotating turbulence. Phys. Rev. E 95 (2), 023114.CrossRefGoogle ScholarPubMed
Van Bokhoven, L. J. A., Clercx, H. J. H., Van Heijst, G. J. F. & Trieling, R. R. 2009 Experiments on rapidly rotating turbulent flows. Phys. Fluids 21 (9), 096601.CrossRefGoogle Scholar
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A 5 (3), 677685.CrossRefGoogle Scholar
Yarom, E. & Sharon, E. 2014 Experimental observation of steady inertial wave turbulence in deep rotating flows. Nat. Phys. 10 (7), 510.CrossRefGoogle Scholar
Yarom, E., Vardi, Y. & Sharon, E. 2013 Experimental quantification of inverse energy cascade in deep rotating turbulence. Phys. Fluids 25 (8), 085105.CrossRefGoogle Scholar
Yeung, P. K. & Zhou, Y. 1998 Numerical study of rotating turbulence with external forcing. Phys. Fluids 10 (11), 28952909.CrossRefGoogle Scholar
Yokoyama, N. & Takaoka, M. 2017 Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence. Phys. Rev. Fluids 2 (9), 092602.CrossRefGoogle Scholar