Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T06:17:20.687Z Has data issue: false hasContentIssue false

Constructive and destructive interaction modes between two tandem flexible flags in viscous flow

Published online by Cambridge University Press:  02 September 2010

SOHAE KIM
Affiliation:
Department of Mechanical Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
WEI-XI HUANG
Affiliation:
Department of Mechanical Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
HYUNG JIN SUNG*
Affiliation:
Department of Mechanical Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
*
Email address for correspondence: [email protected]

Abstract

Two tandem flexible flags in viscous flow were modelled by numerical simulation using an improved version of the immersed boundary method. The flexible flapping flag and the vortices produced by an upstream flag were found to interact via either a constructive or destructive mode. These interaction modes gave rise to significant differences in the drag force acting on the downstream flapping flag in viscous flow. The constructive mode increased the drag force, while the destructive mode decreased the drag force. Drag on the downstream flexible body was investigated as a function of the streamwise and spanwise gap distances, and the bending coefficient of the flexible flags at intermediate Reynolds numbers (200 ≤ Re ≤ 400).

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alben, S. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301.CrossRefGoogle Scholar
Alben, S. 2009 Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641, 489496.CrossRefGoogle Scholar
Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.Google Scholar
Deng, J., Shao, X.-M. & Yu, Z.-X. 2007 Hydrodynamic studies on two traveling wavy foils in tandem arrangement. Phys. Fluids 19, 113104.CrossRefGoogle Scholar
Eldredge, J. D. & Pisani, D. 2008 Passive locomotion of a simple articulated fish-like system in the wake of an obstacle. J. Fluid Mech. 611, 97106.Google Scholar
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97106.CrossRefGoogle Scholar
Farnell, D. J. J., David, T. & Barton, D. C. 2004 Coupled states of flapping flags. J. Fluid. Struct. 19, 2936.CrossRefGoogle Scholar
Fish, F. E. 1999 Energetics of swimming and flying in formation. Comments Theor. Biol. 5, 283304.Google Scholar
Fish, F. E. & Lauder, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.CrossRefGoogle Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354366.CrossRefGoogle Scholar
Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S. & Barrett, D. 1994 Active vorticity control in a shear flow using a flapping foil. J. Fluid Mech. 274, 121.CrossRefGoogle Scholar
Huang, W.-X., Shin, S. J. & Sung, H. J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 22062228.CrossRefGoogle Scholar
Jia, L.-B., Li, F., Yin, X.-Z. & Yin, X.-Y. 2007 Coupling modes between two flapping filaments. J. Fluid Mech. 581, 199220.Google Scholar
Jia, L.-B. & Yin, X.-Z. 2008 Passive oscillations of two tandem flexible filaments in a flowing soap film. Phys. Rev. Lett. 100, 228104.CrossRefGoogle Scholar
Kim, K., Baek, S.-J. & Sung, H. J. 2002 An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations. Intl J. Numer. Meth. Fluids 38, 125138.CrossRefGoogle Scholar
Michelin, S. & Llewellyn Smith, S. G. 2009 Linear stability analysis of coupled parallel flexible plates in an axial flow. J. Fluid. Struct. 25, 11361157.CrossRefGoogle Scholar
Müller, U. K. 2003 Fish'n flag. Science 302, 15111512.CrossRefGoogle ScholarPubMed
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 194502.CrossRefGoogle ScholarPubMed
Schouveiler, L. & Eloy, C. 2009 Coupled flutter of parallel plates. Phys. Fluids 21, 081703.CrossRefGoogle Scholar
Shin, S. J., Huang, W.-X. & Sung, H. J. 2008 Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. Intl J. Numer. Methods Fluids 58, 263286.CrossRefGoogle Scholar
Streitlien, K., Triantafyllou, G. S. & Triantafyllou, M. S. 1996 Efficient foil propulsion through vortex control. AIAA J. 34, 23152319.CrossRefGoogle Scholar
Zdravkovich, M. M. 1985 Flow induced oscillations of two interfering circular cylinders. J. Sound Vib. 101, 511521.CrossRefGoogle Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.CrossRefGoogle Scholar
Zhu, L. 2009 Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455475.CrossRefGoogle Scholar
Zhu, L. & Peskin, C. S. 2002 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452468.CrossRefGoogle Scholar