Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:54:35.442Z Has data issue: false hasContentIssue false

Capturing the influence of intermolecular potential in rarefied gas flows by a kinetic model with velocity-dependent collision frequency

Published online by Cambridge University Press:  17 May 2022

Ruifeng Yuan
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Lei Wu*
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email address for correspondence: [email protected]

Abstract

A kinetic model called the $\nu$-model is proposed to replace the complicated Boltzmann collision operator in the simulation of rarefied flows of monatomic gas. The model follows the relaxation-time approximation, but the collision frequency (i.e. inverse relaxation time) is a function of the molecular velocity to reflect part of the collision details of the Boltzmann equation, and the target velocity distribution function (VDF) to which the VDF relaxes is close to that used in the Shakhov model. Based on the numerical simulation of strong non-equilibrium shock waves, a half-theoretical and half-empirical collision frequency is designed for different intermolecular potentials: the $\nu$-model shows significantly improved accuracy, and the underlying mechanism is analysed. The $\nu$-model also performs well in canonical rarefied microflows, especially in thermal transpiration, where kinetic models with velocity-independent collision frequency lack the capability to distinguish the influence of intermolecular potentials.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alsmeyer, A. 1976 Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497513.CrossRefGoogle Scholar
Ambruş, V.E., Sharipov, F. & Sofonea, V. 2020 Comparison of the Shakhov and ellipsoidal models for the Boltzmann equation and DSMC for ab initio-based particle interactions. Comput. Fluids 211, 104637.CrossRefGoogle Scholar
Andries, P., Tallec, P.L., Perlat, J. & Perthame, B. 2000 The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. (B/Fluids) 19, 813830.CrossRefGoogle Scholar
Bhatnagar, P.L., Gross, E.P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
Bird, G.A. 1963 Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids 6 (10), 15181519.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press Inc, Oxford Science Publications.Google Scholar
Bird, G.A. 2005 The DS2V/3 V program suite for DSMC calculations. In AIP Conference Proceedings, vol. 762, pp. 541–546. American Institute of Physics.CrossRefGoogle Scholar
Cercignani, C. 1966 The method of elementary solutions for kinetic models with velocity-dependent collision frequency. Ann. Phys. 40 (3), 469481.CrossRefGoogle Scholar
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Scottish Academic Press.Google Scholar
Cercignani, C. 2000 Rarefied Gas Dynamics from Basic Concepts to Actual Calculations. Cambridge University Press.Google Scholar
Chapman, S. & Cowling, T.G. 1970 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Chen, S.Z., Xu, K. & Cai, Q.D. 2015 A comparison and unification of ellipsoidal statistical and Shakhov BGK models. Adv. Appl. Maths Mech. 7, 245266.CrossRefGoogle Scholar
Fei, F., Liu, H.L., Liu, Z.H. & Zhang, J. 2020 A benchmark study of kinetic models for shock waves. AIAA J. 58, 25962608.CrossRefGoogle Scholar
Gorji, M.H. & Jenny, P. 2013 A Fokker-Planck based kinetic model for diatomic rarefied gas flows. Phys. Fluids 25, 062002.CrossRefGoogle Scholar
Gorji, M.H., Torrilhon, M. & Jenny, P. 2011 Fokker-Planck model for computational studies of monatomic rarefied gas flows. J. Fluid Mech. 680, 574601.CrossRefGoogle Scholar
Gross, E.P. & Jackson, E.A. 1959 Kinetic models and the linearized Boltzmann equation. Phys. Fluids 2 (4), 432441.CrossRefGoogle Scholar
Gupta, N.K. & Gianchandani, Y.B. 2008 Thermal transpiration in zeolites: a mechanism for motionless gas pumps. Appl. Phys. Lett. 93 (19), 193511.CrossRefGoogle Scholar
Holway, L.H. 1966 New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 16581673.CrossRefGoogle Scholar
Huang, J.C., Xu, K. & Yu, P.B. 2012 A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases. Commun. Comput. Phys. 12, 662690.CrossRefGoogle Scholar
Ivanov, M.S. & Gimelshein, S.F. 1998 Computational hypersonic rarefied flows. Annu. Rev. Fluid Mech. 30, 469505.CrossRefGoogle Scholar
Jenny, P., Torrilhon, M. & Heinz, S. 2010 A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. J. Comput. Phys. 229, 10771098.CrossRefGoogle Scholar
John, B., Gu, X.-J. & Emerson, D.R. 2011 Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: a parallel DSMC study. Comput. Fluids 45 (1), 197201.CrossRefGoogle Scholar
Karniadakis, G., Beskok, A. & Aluru, N. 2005 Microflows and Nanoflows: Fundamentals and Simulation. Springer Science+Business Media, Inc.Google Scholar
Krook, M. 1959 Continuum equations in the dynamics of rarefied gases. J. Fluid Mech. 6 (4), 523541.CrossRefGoogle Scholar
Larina, I.N. & Rykov, V.A. 2007 Models of a linearized Boltzmann collision integral. Comput. Math. Math. Phys. 47 (6), 983997.CrossRefGoogle Scholar
Liu, S., Yuan, R.F., Javid, U. & Zhong, C.W. 2019 Conservative discrete-velocity method for the ellipsoidal Fokker-Planck equation in gas-kinetic theory. Phys. Rev. E 100, 033310.CrossRefGoogle ScholarPubMed
Liu, S. & Zhong, C. 2014 Investigation of the kinetic model equations. Phys. Rev. E 89 (3), 033306.CrossRefGoogle ScholarPubMed
Loyalka, S.K. & Ferziger, J.H. 1967 Model dependence of the slip coefficient. Phys. Fluids 10, 18331839.CrossRefGoogle Scholar
Loyalka, S.K. & Ferziger, J.H. 1968 Model dependence of the temperature slip coefficient. Phys. Fluids 11, 11681671.CrossRefGoogle Scholar
Maxwell, J.C. 1879 VII. On stresses in rarified gases arising from inequalities of temperature. Proc. R. Soc. Lond. 170, 231256.Google Scholar
Mieussens, L. 2000 a Discrete velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429466.CrossRefGoogle Scholar
Mieussens, L. 2000 b Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Meth. Appl. Sci. 10, 11211149.CrossRefGoogle Scholar
Mieussens, L. & Struchtrup, H. 2004 Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number. Phys. Fluids 16 (8), 22972813.CrossRefGoogle Scholar
Reynolds, O. 1879 On certain dimensional properties of matter in the gaseous state. Phil. Trans. R. Soc. Part 1 170, 727845.Google Scholar
Rogers, S.E. 1995 Comparison of implicit schemes for the incompressible Navier–Stokes equations. AIAA J. 33 (11), 20662072.CrossRefGoogle Scholar
Schmidt, B. 1969 Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39 (2), 361373.CrossRefGoogle Scholar
Shakhov, E.M. 1968 a Approximate kinetic equations in rarefied gas theory. Fluid Dyn. 3, 112115.CrossRefGoogle Scholar
Shakhov, E.M. 1968 b Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3 (5), 9596.CrossRefGoogle Scholar
Sharipov, F. & Benites, V.J. 2017 Transport coefficients of helium-neon mixtures at low density computed from ab initio potentials. J. Chem. Phys. 147, 224302.CrossRefGoogle ScholarPubMed
Sharipov, F. & Bertoldo, G. 2009 Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard-Jones potential over a wide range of the Knudsen number. Phys. Fluids 21, 067101.CrossRefGoogle Scholar
Sharipov, F. & Seleznev, V. 1998 Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27, 657706.CrossRefGoogle Scholar
Sone, Y. 2002 Kinetic Theory and Fluid Dynamics. Birkhauser.CrossRefGoogle Scholar
Struchtrup, H. 1997 The BGK-model with velocity-dependent collision frequency. Contin. Mech. Theromodyn. 9, 2332.CrossRefGoogle Scholar
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Fows: Approximation Methods in Kinetic Theory. Springer.CrossRefGoogle Scholar
Takata, S. & Funagane, H. 2011 Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function. J. Fluid Mech. 669, 242259.CrossRefGoogle Scholar
Valentini, P. & Schwartzentruber, T.E. 2009 Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21 (6), 066101.CrossRefGoogle Scholar
Vargo, S.E., Muntz, E.P., Shiflett, G.R. & Tang, W.C. 1999 Knudsen compressor as a micro-and macroscale vacuum pump without moving parts or fluids. J. Vac. Sci. Technol. A: Vac. Surf. Films 17, 23082313.CrossRefGoogle Scholar
Wang, P., Ho, M.T., Wu, L., Guo, Z.L. & Zhang, Y.H. 2018 A comparative study of discrete velocity methods for low-speed rarefied gas flows. Comput. Fluids 161, 3346.CrossRefGoogle Scholar
Wang, P., Su, W. & Wu, L. 2020 Thermal transpiration in molecular gas. Phys. Fluids 32, 082005.CrossRefGoogle Scholar
Wu, L., Ho, M.H., Germanou, L., Gu, X.J., Liu, C., Xu, K. & Zhang, Y.H. 2017 On the apparent permeability of porous media in rarefied gas flows. J. Fluid Mech. 822, 398417.CrossRefGoogle Scholar
Wu, L., Liu, H.H., Reese, J.M. & Zhang, Y.H. 2016 Non-equilibrium dynamics of dense gas under tight confinement. J. Fluid Mech. 794, 252266.CrossRefGoogle Scholar
Wu, L., Liu, H.H., Zhang, Y.H. & Reese, J.M. 2015 a Influence of intermolecular potentials on rarefied gas flows: fast spectral solutions of the Boltzmann equation. Phys. Fluids 27, 082002.CrossRefGoogle Scholar
Wu, L., Reese, J.M. & Zhang, Y.H. 2014 Solving the Boltzmann equation by the fast spectral method: application to microflows. J. Fluid Mech. 746, 5384.CrossRefGoogle Scholar
Wu, L., White, C., Scanlon, T.J., Reese, J.M. & Zhang, Y.H. 2013 Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 2752.CrossRefGoogle Scholar
Wu, L., White, C., Scanlon, T.J., Reese, J.M. & Zhang, Y.H. 2015 b A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases. J. Fluid Mech. 763, 2450.CrossRefGoogle Scholar
Xu, X., Chen, Y. & Xu, K. 2021 Modeling and computation for non-equilibrium gas dynamics: beyond single relaxation time kinetic models. Phys. Fluids 33 (1), 011703.CrossRefGoogle Scholar
Yuan, L. 2002 Comparison of implicit multigrid schemes for three-dimensional incompressible flows. J. Comput. Phys. 177 (1), 134155.CrossRefGoogle Scholar
Yuan, R.F. & Zhong, C.W. 2019 A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes. Comput. Phys. Commun. 0, 106972.Google Scholar
Zheng, Y.S. & Struchtrup, H. 2005 Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity-dependent collision frequency. Phys. Fluids 17 (12), 127103.CrossRefGoogle Scholar
Zhu, Y.J., Zhong, C.W. & Xu, K. 2016 Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. J. Comput. Phys. 315, 1638.CrossRefGoogle Scholar
Zhu, Y., Zhong, C. & Xu, K. 2017 Unified gas-kinetic scheme with multigrid convergence for rarefied flow study. Phys. Fluids 29 (9), 096102.CrossRefGoogle Scholar