Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T05:13:33.570Z Has data issue: false hasContentIssue false

Bending of floating flexible legs

Published online by Cambridge University Press:  08 August 2008

KUN JOONG PARK
Affiliation:
School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
HO-YOUNG KIM*
Affiliation:
School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea
*
Author to whom correspondence should be addressed: [email protected]

Abstract

When long thin flexible solid objects, such as the legs of water striders, disposable spoons and human hairs, are pressed against a liquid surface, they bend due to interfacial and hydrostatic forces. To understand the phenomenon, we study the bending of a sheet touching the liquid surface at an angle while clamped at the other end, to find its deflection and the load that the sheet can support before sinking. The theoretically predicted shapes of the sheet and the meniscus match well with experiments. Our theory shows that flexible sheets can support more load than rigid ones before sinking when the sheets are highly hydrophobic.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bico, J., Roman, B., Moulin, L. & Boudaoud, A. 2004 Nature 432, 690.CrossRefGoogle Scholar
Bush, J. W. M. & Hu, D. L. 2006 Annu. Rev. Fluid Mech. 38, 339369.CrossRefGoogle Scholar
Bush, J. W. M., Hu, D. L. & Prakash, M. 2008 Adv. Insect Physiol. 34, 117192.CrossRefGoogle Scholar
Cho, H., Kim, H.-Y., Kang, J. Y. & Kim, T. S. 2007 J. Colloid Interface Sci. 306, 379385.CrossRefGoogle Scholar
Cohen, A. E. & Mahadevan, L. 2003 Proc. Natl Acad. Sci. 100, 1214112146.CrossRefGoogle Scholar
Gibbs, J. W. 1906 Scientific Papers, vol. 1, Dover, p. 326.Google Scholar
Keller, J. B. 1998 Phys. Fluids 10, 30093010.CrossRefGoogle Scholar
Kim, H.-Y. & Mahadevan, L. 2006 J. Fluid Mech. 548, 141150.CrossRefGoogle Scholar
Kwon, H.-M., Kim, H.-Y., Puëll, J. & Mahadevan, L. 2008 J. Appl. Phys. 103, 093519.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1986 Theory of Elasticity, 3rd Edn. Pergamon.Google Scholar
Lee, D.-G. & Kim, H.-Y. 2008 Langmuir 24, 142145.CrossRefGoogle Scholar
Lee, H. J., Chang, Y. S., Lee, Y. P., Jeong, K.-H. & Kim, H.-Y. 2007 Sens. Actuators A 136, 717722.CrossRefGoogle Scholar
Neukirch, S., Roman, B., deGaudemaris, B. Gaudemaris, B. & Bico, J. 2007 J. Mech. Phys. Solids 55, 12121235.CrossRefGoogle Scholar
Song, Y. S. & Sitti, M. 2007 IEEE Trans. Robot. 23, 578589.CrossRefGoogle Scholar