Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-21T15:54:23.831Z Has data issue: false hasContentIssue false

Wave-induced longitudinal-vortex instability in shear flows

Published online by Cambridge University Press:  20 April 2006

A. D. D. Craik
Affiliation:
Department of Applied Mathematics, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland

Abstract

The instability of two-dimensional periodic flows to spanwise-periodic ‘longitudinal- vortex’ modes is examined. The undisturbed state comprises a parallel shear flow and a two-dimensional O(ε) wave field as encountered in, say, water-wave or hydrodynamic-stability theories.

When the mean shear is weak, of order ε2, the present theory reduces to that of Craik (1977) and Leibovich (1977b, 1980). For stronger but still weak shear, of order ε, it is established that the Craik-Leibovich instability mechanism is essentially unchanged, apart from scaling factors. For strong O(1) shear flows, the governing equations are derived by using, in part, a generalized Lagrangian-mean formulation. The resultant eigenvalue problem for the longitudinal-vortex instability is then more complex, but simplifies in the case of small spanwise spacing of the vortices, in the inviscid limit. An example is given of flows that exhibit instability in this limiting case. Such instability seems likely to occur for a wide class of periodic shear flows. Complementary physical interpretations of the instability mechanism are discussed.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, J. B. & Blackwelder, R. F. 1980 In Laminar–Turbulent Transition (ed. R. Eppler & H. Fasel), pp. 110119. Springer.
Andrews, D. G. & McIntyre, M. E. 1978a J. Fluid Mech. 89, 609646.
Andrews, D. G. & McIntyre, M. E. 1978b J. Fluid Mech. 89, 647664.
Antar, B. N. & Collins, F. G. 1975 Phys. Fluids 18, 289297.
Benney, D. J. 1964 Phys. Fluids 7, 319326.
Benney, D. J. & Bergeron, R. F. 1969 Stud. Appl. Math. 48, 181204.
Benney, D. J. & Lin, C. C. 1960 Phys. Fluids 3, 656657.
Craik, A. D. D. 1970 J. Fluid Mech. 41, 801821.
Craik, A. D. D. 1977 J. Fluid Mech. 81, 209223.
Craik, A. D. D. 1980 J. Fluid Mech. 99, 247265.
Craik, A. D. D. 1982a J. Fluid Mech. 116, 187205.
Craik, A. D. D. 1982b J. Fluid Mech. 125, 2735.
Craik, A. D. D. & Leibovich, S. 1976 J. Fluid Mech. 73, 401426.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Grimshaw, R. H. J. 1982 J. Fluid Mech. 115, 347377.
Herbert, T. & Morkovin, M. V. 1980 In Laminar–Turbulent Transition (ed. R. Eppler & H. Fasel), pp. 4772. Springer.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 J. Fluid Mech. 12, 134.
Leibovich, S. 1977a J. Fluid Mech. 79, 715743.
Leibovich, S. 1977b J. Fluid Mech. 82, 561585.
Leibovich, S. 1980 J. Fluid Mech. 99, 715724.
Leibovich, S. & Paolucci, S. 1980 J. Phys. Oceanogr. 10, 186207.
Leibovich, S. & Paolucci, S. 1981 J. Fluid Mech. 102, 141167.
Leibovich, S. & Radhakrishnan, K. 1977 J. Fluid Mech. 80, 481507.
Leibovich, S. & Ulrich, D. 1972 J. Geophys. Res. 77, 16831688.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Mcintyre, M. E. 1980 Pure Appl. Geophys. 118, 152176.
Nayfeh, A. H. 1981 J. Fluid Mech. 107, 441453.
Nishioka, M., Iida, S. & Ichikawa, Y. 1975 J. Fluid Mech. 72, 731752.