Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-04T22:03:53.188Z Has data issue: false hasContentIssue false

Water droplet condensation and evaporation in turbulent channel flow

Published online by Cambridge University Press:  22 May 2014

E. Russo*
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
J. G. M. Kuerten
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
C. W. M. van der Geld
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
B. J. Geurts
Affiliation:
Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands Anisotropic Turbulence, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical correlations describing momentum, heat and mass transfer between the droplet phase and the carrier gas phase. An incompressible flow formulation is applied for direct numerical simulation of differentially heated turbulent channel flow. The two-way coupling is investigated in terms of its effects on mass and heat transfer characteristics and the resulting droplet size distribution. Compared to simulations without droplets or those with solid particles with the same size and specific heat as the water droplets, a significant increase in Nusselt number is found, arising from the additional phase changes. The Nusselt number increases with increasing ambient temperature and is almost independent of the heat flux applied to the walls of the channel. The time-averaged droplet size distribution displays a characteristic dependence on position expressing the combined effect of turbophoresis and phase changes in turbulent wall-bounded flow. In the statistically steady state that is reached after a long time, the resulting flow exhibits a mean motion of water vapour from the warm wall to the cold wall, where it condenses on average, followed by a net mean mass transfer of droplets from the cold wall to the warm wall.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, C. 1888 Tension des vapeurs: nouvelle relation entre les tension et les temperatures. Comptes Rendus 107, 681684; 778–780; 836–837.Google Scholar
Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13, 24372440.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.Google Scholar
Bec, J., Biferale, L., Lanotte, A. S., Scagliarini, A. & Toschi, F. 2010 Turbulent pair dispersion of inertial particles. J. Fluid Mech. 645, 497528.CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. John Wiley & Sons.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic Press.Google Scholar
Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flow with Droplets and Particles. CRC Press.Google Scholar
Eaton, J. K. 2009 Two-way coupled turbulence simulations of gas–particle flows using point-particle tracking. Intl J. Multiphase Flow 35 (9), 792800.Google Scholar
Elghobashi, S. 1991 Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.Google Scholar
Esmaeeli, A. & Tryggvason, G. 1998 Direct numerical simulations of bubbly flows. Part I. Low-Reynolds-number arrays. J. Fluid Mech. 377, 313345.Google Scholar
Esmaeeli, A. & Tryggvason, G. 1999 Direct numerical simulations of bubbly flows. Part II. Moderate-Reynolds-number arrays. J. Fluid Mech. 385, 325358.CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15, 315329.Google Scholar
Hinze, J. O. 1956 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.Google Scholar
Kuerten, J. G. M. 2006 Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108.Google Scholar
Kuerten, J. G. M., van der Geld, C. W. M. & Geurts, B. J. 2011 Turbulence modification and heat trasfer enhancement by inertial particles in turbulent channel flow. Phys. Fluids 23, 123301.Google Scholar
Lenert, A., Nam, Y., Yilbas, B. S. & Wang, E. N. 2013 Focusing of phase change microparticles for local heat transfer enhancement in laminar flows. Intl J. Heat Mass Transfer 56 (1–2), 380389.Google Scholar
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34 (9), 879893.Google Scholar
Mashayek, F. 1997 Direct numerical simulations of evaporating droplet dispersion in forced low-Mach-number turbulence. Intl J. Heat Mass Transfer 41, 26012617.CrossRefGoogle Scholar
Mashayek, F. 1998 Droplet–turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163203.Google Scholar
Mashayek, F. 2000 Numerical investigation of reacting droplets in homogeneous shear turbulence. J. Fluid Mech. 405, 136.CrossRefGoogle Scholar
Mashayek, F. & Pandya, R. V. R. 2003 Analytical description of particle/droplet-laden turbulent flows. Prog. Energy Combust. Sci. 29, 329378.CrossRefGoogle Scholar
Masi, E., Simonin, O. & Bédat, B. 2011 The mesoscopic Eulerian approach for evaporating droplets interacting with turbulent flows. Flow Turbul. Combust. 86 (3–4), 563583.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.Google Scholar
Miller, R. S. 2001 Effects of non-reacting solid particle and liquid droplet loading on an exothermic reacting mixing layer. Phys. Fluids 13 (11), 33033320.Google Scholar
Miller, R. S. & Bellan, J. 1999 Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293338.CrossRefGoogle Scholar
Miller, R. & Bellan, J. 2000 Direct numerical simulation and subgrid analysis of a transitional droplet laden mixing layer. Phys. Fluids 12, 650671.Google Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.Google Scholar
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.Google Scholar
Reveillon, J. & Vervisch, L. 2005 Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech. 537, 317347.Google Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.Google Scholar
Siregar, D. P. & Kuerten, J. G. M. 2013 Numerical simulation of the drying of inkjet-printed droplets. J. Colloid Interface Sci. 392, 388395.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Turns, S. R. 2006 Thermal-Fluid Sciences: an Integrated Approach. Cambridge University Press.Google Scholar
Wang, Y. & Rutland, C. J. 2005 Effects of temperature and equivalence ratio on the ignition of $n$ -heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30 (1), 893900.Google Scholar
Wang, Y. & Rutland, C. J. 2006 Direct numerical simulation of turbulent flow with evaporating droplets at high temperature. Heat Mass Transfer 42, 11031110.Google Scholar
van Wissen, R. J. E., Schreel, K. R. A. M. & van der Geld, C. W. M. 2005 PIV measurements of a steam-driven, confined, turbulent water jet. J. Fluid Mech. 530, 353368.Google Scholar